Welcome to Berkeley Computer Science!
The Course Staff

TAs run sections, labs, and also everything else

Readers are your personal programming mentors
Lab Assistants ensure that you don’t get stuck
What is Computer Science?

Systems

Artificial Intelligence

Graphics

Security

Networking

Programming Languages

Theory

Scientific Computing

Computer Vision

Planning

Robotics

Natural Language Processing

...
What is 61A?

• A course about managing complexity
 ▪ Mastering abstraction
 ▪ Not about 1’s and 0’s

• An introduction to Python
 ▪ All the features we really need: introduced today
 ▪ Understanding through implementation
 ▪ Programs that run other programs: meta-evaluation

• A challenging course that will demand a lot of you
What is 61A?

Plone Conference. Photo courtesy of Kriszta Szita
Alternatives to 61A

CS 61AS: Self-paced 61A

CS 10: The Beauty and Joy of Computing
Course Policies

The purpose of this course is to help you learn

The staff is here to make you successful

All the details are online:

http://inst.eecs.berkeley.edu/~cs61A/fa12/about.html
Collaboration

- Discuss everything with each other
- **EPA**: Effort, participation, and altruism
- Homework can be completed with a partner
- Projects *should* be completed with a partner
- Find a project partner in your section!

The limits of collaboration

- One simple rule: don’t share code
- Copying project solutions is a serious offense!
Announcements

• Next week, both section and lab will meet in the lab rooms.
• Homework 1 is posted! All homework is graded on effort.
• If you are on the waitlist, still complete assignments!
• Midterms are on 9/19 and 10/24. Final exam is on 12/13.
• Read the lecture notes before you come to lecture!
Types of expressions

An expression describes a computation and evaluates to a value

\[18 + 69 \]
\[\sin \pi \]
\[\frac{6}{23} \]
\[\sqrt{3493161} \]

\[f(x) \]

\[| - 1869| \]

\[\sum_{i=1}^{100} i \]

\[\left(\frac{69}{18} \right) \]
Call Expressions in Python

All expressions can use function call notation

(Demo)
Anatomy of a Call Expression

Evaluation procedure for call expressions:

1. Evaluate the operator and operand subexpressions

2. Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpression
Evaluating Nested Expressions

\[
\text{mul}(\text{add}(2, \text{mul}(4, 6)), \text{add}(3, 5))
\]

208

\[
\text{mul}(\text{add}(2, \text{mul}(4, 6)), \text{add}(3, 5))
\]

26

\[
\text{add}(2, \text{mul}(4, 6))
\]

24

\[
\text{mul}(4, 6)
\]

mul

4

6

2

\[
\text{add}(3, 5)
\]

8

add

3

5
Data, Functions, and Interpreters

Data: The things that programs fiddle with

- “The Art of Computer Programming”
- Shakespeare’s 37 plays
 - *Donald Knuth*
 - *(Ka–NO0TH)*

Functions: Rules for manipulating data

- Count the words in a line of text
- Add up numbers
- Pronounce someone’s name

Interpreter: An implementation of the procedure for evaluation