Data Abstraction

- Compound objects combine primitive objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
- Isolate two parts of any program that uses data:
 - How data are represented (as parts)
 - How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Rational Numbers

- \(\frac{\text{numerator}}{\text{denominator}} \)

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation is lost!

Assume we can compose and decompose rational numbers:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Selectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>rational(n, d) returns a rational number x</td>
<td>numer(x) returns the numerator of x</td>
</tr>
<tr>
<td>denom(x) returns the denominator of x</td>
<td></td>
</tr>
</tbody>
</table>

Rational Number Arithmetic

<table>
<thead>
<tr>
<th>Example:</th>
<th>General Form:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{2} \times \frac{3}{5} = \frac{9}{10})</td>
<td>(\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx\times ny}{dx\times dy})</td>
</tr>
<tr>
<td>(\frac{3}{2} + \frac{3}{5} = \frac{21}{10})</td>
<td>(\frac{nx}{dx} + \frac{ny}{dy} = \frac{nx\times dy + ny\times dx}{dx\times dy})</td>
</tr>
</tbody>
</table>

Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y), denom(x) * denom(y))
def add_rational(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return rational(nx * dy + ny * dx, dx * dy)
def eq_rational(x, y):
    return numer(x) == numer(y) and denom(x) == denom(y)
```

Tuples

- A tuple literal: \(\text{pair} = (1, 2) \)
- Comma-separated expression
- "Unpacking" a tuple
- Element selection

```python
>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2
```

More tuples next lecture
Representing Rational Numbers

```python
def rational(n, d):
    """Construct a rational number x that represents n/d."""
    return (n, d)

from operator import getitem

def numer(x):
    """Return the numerator of rational number x."""
    return getitem(x, 0)

def denom(x):
    """Return the denominator of rational number x."""
    return getitem(x, 1)

g = gcd(n, d)
rational(n//g, d//g)
```

Reducing to Lowest Terms

Example:

\[
\begin{array}{c}
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2} \\
\frac{2}{5} + \frac{1}{10} = \frac{1}{2}
\end{array}
\]

```python
from fractions import gcd

def rational(n, d):
    """Construct a rational number x that represents n/d."""
    g = gcd(n, d)
    return (n//g, d//g)
```

Abstraction Barriers

```
Rational numbers as whole data values
   add_rationals mul_rationals eq_rationals
Rational numbers as numerators & denominators
   rational numer denom
Rational numbers as tuples
   tuple getitem

However tuples are implemented in Python
```

Violating Abstraction Barriers

```
add_rational( (1, 2), (1, 4) )
def divide_rational(x, y):
    return (x[0] * y[1], x[1] * y[0])
```

What is Data?

- We need to guarantee that constructor and selector functions together specify the right behavior.
- Behavior condition: If we construct rational number x from numerator n and denominator d, then numer(x)/denom(x) must equal n/d.
- An abstract data type is some collection of selectors and constructors, together with some behavior condition(s).
- If behavior conditions are met, the representation is valid.

You can recognize data types by behavior, not by bits

Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element tuple (also known as a pair).

What is a pair?

Constructors, selectors, and behavior conditions:

- If a pair p was constructed from elements x and y, then
 - getitem_pair(p, 0) returns x, and
 - getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types. Not true for rational numbers because of GCD
Functional Pair Implementation

```python
def pair(x, y):
    """Return a functional pair."""
    def dispatch(m):
        if m == 0:
            return x
        elif m == 1:
            return y
    return dispatch

def getitem_pair(p, i):
    """Return the element at index i of pair p."""
    return p(i)
```

Constructor is a higher-order function

Selector defers to the object itself

Using a Functionally Implemented Pair

```python
>>> p = pair(1, 2)
>>> getitem_pair(p, 0)
1
>>> getitem_pair(p, 1)
2
```

As long as we do not violate the abstraction barrier, we don’t need to know that pairs are just functions

If a pair p was constructed from elements x and y, then

• getitem_pair(p, 0) returns x, and
• getitem_pair(p, 1) returns y.

This pair representation is valid!