61A Lecture 12

Monday, September 24
Dictionaries

{"Dem": 0}
Restrictions on Dictionaries

Dictionaries are unordered collections of key–value pairs.

Dictionary keys do have two restrictions:

- A key of a dictionary cannot be an object of a mutable built-in type.

- Two keys cannot be equal. There can be at most one value for a given key.

This first restriction is tied to Python's underlying implementation of dictionaries.

The second restriction is an intentional consequence of the dictionary abstraction.
Sharing and Identity

demo = []
What Would Python Print?

The print function returns None. It also displays its arguments (separated by spaces) when it is called.

If you’re not sure what will happen, draw environment diagrams

```python
from operator import add, mul

def square(x):
    return mul(x, x)

def delay(arg):
    print('delayed')
    def g():
        return arg
    return g

def main():
    print(add(3, 4), print(5))  # prints 7 None
    print(delay(delay)()(6)())  # prints None
    print(add(3, 4), print(5))  # prints 7 None
    print(add(3, 4), print(5))  # prints 7 None
```

A function that takes any argument and returns a function that returns that arg

Names in nested def statements can refer to their enclosing scope
What Would Python Print?

The print function returns None. It also displays its arguments (separated by spaces) when it is called.

If you’re not sure what will happen, draw environment diagrams

```python
from operator import add, mul

def square(x):
    return mul(x, x)

def pirate(arggg):
    print("matey")
    def plunder(arggg):
        return arggg
    return plunder

A function that always returns the identity function

add(pirate(3)(square)(4), 1)
```

A name evaluates to the value bound to that name in the earliest frame of the current environment in which that name is found.
def horse(mask):
 horse = mask
 return horse

def mask(horse):
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)
p, s, y = 1, 2, 3

def gang(p):
 nam = style(p)
 return (nam(4), 5)

def style(s):
 return lambda y: (p, s, y)
gang(3)
def a(b):
 def a(b):
 return b(a)
 a, b = a(b)
 return a

def b(a):
 return lambda b: (a, a)

a(b(3))
Inverse Functions

If g is the inverse of invertible f, then $x = f(g(x))$

Key equation: $g(x)$ is the value y, such that $f(y) = x$

Rearrange to use Newton’s method: $f(y) - x = 0$

```python
def invert(f):
    def g(x):
        return find_root(lambda y: f(y) - x)
    return g
```