Testing for Identity

Demo
Implementing Dice

Random numbers are useful for experimentation

They also appear in lots of algorithms, e.g.,
- Primality tests
- Machine learning techniques

```python
def make_dice(sides=6):
    seed = 1
    multiplier = pow(7, 5)
    big_prime = pow(2, 31) - 1
    def dice():
        nonlocal seed
        seed = (multiplier * seed) % big_prime
        return (sides*seed) // big_prime + 1
    return dice
```


Implementing a Mutable Container Object

Demo
Dispatch Functions

A technique for packing multiple behaviors into one function

```
def pair(x, y):
    """Return a function that behaves like a pair."""
    def dispatch(m):
        if m == 0:
            return x
        elif m == 1:
            return y
    return dispatch
```

Message argument can be anything, but strings are most common

The body of a dispatch function is always the same:

- One conditional statement with several clauses
- Headers perform equality tests on the message
Message Passing

An approach to organizing the relationship among different pieces of a program

Different objects pass messages to each other

• What is your fourth element?
• Change your third element to this new value. (please?)

Encapsulates the behavior of all operations on a piece of data

Important historical role:
The message passing approach strongly influenced object-oriented programming (next lecture)
def container_dispatch(contents):
 def dispatch(message, value=None):
 nonlocal contents
 if message == 'get':
 return contents
 if message == 'put':
 contents = value
 return dispatch
 return dispatch, get, put

def container(contents):
 def get():
 return contents
 def put(value):
 nonlocal contents
 contents = value
 return get, put

Demo
def mutable_rlist():
 contents = empty_rlist

def dispatch(message, value=None):
 nonlocal contents
 if message == 'len':
 return len_rlist(contents)
 elif message == 'getitem':
 return getitem_rlist(contents, value)
 elif message == 'push_first':
 contents = make_rlist(value, contents)
 elif message == 'pop_first':
 f = first(contents)
 contents = rest(contents)
 return f
 elif message == 'str':
 return str(contents)

return dispatch
Implementing Dictionaries

def dictionary():
 """Return a functional implementation of a dictionary.""
 records = []

def getitem(key):
 for k, v in records:
 if k == key:
 return v

def setitem(key, value):
 for item in records:
 if item[0] == key:
 item[1] = value
 return
 records.append([key, value])

def dispatch(message, key=None, value=None):
 if message == 'getitem':
 return getitem(key)
 elif message == 'setitem':
 setitem(key, value)
 elif message == 'keys':
 return tuple(k for k, _ in records)
 elif message == 'values':
 return tuple(v for _, v in records)
 return dispatch

Demo
Dispatch Dictionaries

Enumerating different messages in a conditional statement isn't very convenient:

- Equality tests are repetitive
- We can't add new messages without writing new code

A dispatch dictionary has messages as keys and functions (or data objects) as values.

Dictionaries handle the message look-up logic; we concentrate on implementing useful behavior.

Demo

In Javascript, all objects are just dictionaries
Example: Constraint Programming

\[
\begin{align*}
a + b &= c \\
a &= c - b \\
b &= c - a
\end{align*}
\]

Algebraic equations are *declarative*. They describe a relation among different quantities.

Python functions are *procedural*. They describe how to compute a result from a set of input arguments.

Constraint programming:
- We define the relationship between quantities
- We provide values for the "known" quantities
- The system computes values for the "unknown" quantities

Challenge: We want a general means of combination.

\[
\begin{align*}
\text{Boltzmann’s constant} \\
p \times v &= n \times k \times t \\
9 \times c &= 5 \times (f - 32)
\end{align*}
\]
A Constraint Network for Temperature Conversion

Combination idea: All intermediate quantities have values too.

\[u = 9 \times \text{celsius} = 5 \times (\text{fahrenheit} - 32) \]

This quantity relates directly to celsius

This quantity relates directly to fahrenheit

Both sides of the equation are equal: they must be the same quantity