61A Lecture 23

Friday, October 19
Trees with Internal Node Values
Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.
Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

```
  fib(6)
  /     \
/      /  \nfib(4)  fib(5)
  /     /    \
fib(2) fib(3) fib(3)
 /  \
/    \
fib(1) fib(2) fib(1)
  /  \
  0  1
```
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

A valid tree cannot be a subtree of itself (no cycles!)
Trees need not only have values at their leaves.

```python
class Tree(object):
```

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
```

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
```

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right
```

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right
```

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

Valid if left and right are each either None or a Tree instance

A valid tree cannot be a subtree of itself (no cycles!)
```
Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
```

Valid if left and right are each either None or a Tree instance

A valid tree cannot be a subtree of itself (no cycles!)
Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
```

Valid if left and right are each either None or a Tree instance

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
```

Valid if left and right are each either None or a Tree instance

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        Valid if left and right are each either None or a Tree instance
        A valid tree cannot be a subtree of itself (no cycles!)
```
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
```

Valid if left and right are each either None or a Tree instance

A valid tree cannot be a subtree of itself (no cycles!)
Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
```

Valid if left and right are each either None or a Tree instance

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
    right = fib_tree(n-1)
```

Valid if left and right are each either None or a Tree instance

A valid tree cannot be a subtree of itself (no cycles!)
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
    right = fib_tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```

- **Valid if left and right are each either None or a Tree instance**
- **A valid tree cannot be a subtree of itself (no cycles!)**
Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
    right = fib_tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```

A valid tree cannot be a subtree of itself (no cycles!)

Valid if left and right are each either None or a Tree instance

Demo
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
```
Implementations of the same functional abstraction can require different amounts of time to compute their result.

def count_factors(n): (Demo)
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

def count_factors(n): (Demo)

Time (remainders)
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors
```
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors
```

(Demo)
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors
```

<table>
<thead>
<tr>
<th>Time (remainders)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
</tbody>
</table>
Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors

sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
    if n % k == 0:
        factors += 2
    k += 1
if k * k == n:
    factors += 1
return factors
```

Time (remainders)
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors
```

```python
sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
    if n % k == 0:
        factors += 2
        k += 1
    if k * k == n:
        factors += 1
return factors
```

Time (remainders)

n

\sqrt{n}
The Consumption of Space
The Consumption of Space

Which environment frames do we need to keep during evaluation?
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of **active** environments.
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments. Values and frames in active environments consume memory.
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments. Values and frames in active environments consume memory. Memory used for other values and frames can be reclaimed.

Active environments:

• Environments for any statements currently being executed
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments
Fibonacci Memory Consumption

```
Fibonacci Memory Consumption

fib(6)
  /     
fib(4)   fib(5)
  /     
fib(2)   fib(3)
    /   
  1 fib(1)
    /   
  0 fib(2)
        /   
    0 fib(1)
      /   
  0 fib(2)
        /   
    0 fib(1)
      /   
  0 fib(2)
        /   
    0 1
      /
  0 1
```
Fibonacci Memory Consumption

Assume we have reached this step
Fibonacci Memory Consumption

Assume we have reached this step.
Fibonacci Memory Consumption

Has an active environment

Assume we have reached this step
Fibonacci Memory Consumption

Assume we have reached this step

Has an active environment
Can be reclaimed
Fibonacci Memory Consumption

Assume we have reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created
Order of Growth
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

\(n \): size of the problem
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

\(n \): size of the problem

\(R(n) \): Measurement of some resource used (time or space)
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

\(n \): size of the problem

\(R(n) \): Measurement of some resource used (time or space)

\[
R(n) = \Theta(f(n))
\]
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

\(n \): size of the problem

\(R(n) \): Measurement of some resource used (time or space)

\[R(n) = \Theta(f(n)) \]

means that there are positive constants \(k_1 \) and \(k_2 \) such that
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

n: size of the problem

$R(n)$: Measurement of some resource used (time or space)

$$R(n) = \Theta(f(n))$$

means that there are positive constants k_1 and k_2 such that

$$k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n)$$
Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

\(n: \) size of the problem

\(R(n): \) Measurement of some resource used (time or space)

\[R(n) = \Theta(f(n)) \]

means that there are positive constants \(k_1 \) and \(k_2 \) such that

\[k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n) \]

for sufficiently large values of \(n \).
Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
@memo
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```

```
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
        prev, curr = curr, prev + curr
    return curr
```
Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
        prev, curr = curr, prev + curr
    return curr

@memo
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>
Iterative and memoized implementations are not the same.

```
@memo
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```python
@memo
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
        prev, curr = curr, prev + curr
    return curr

def fib(n):
    if n == 1:
        return 1
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```python
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
        prev, curr = curr, prev + curr
    return curr

@memo
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib_iter(n)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>fib(n)</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors

sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
    if n % k == 0:
        factors += 2
    k += 1
    if k * k == n:
        factors += 1
return factors
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time.

```
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors
```

```
sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
    if n % k == 0:
        factors += 2
    k += 1
if k * k == n:
    factors += 1
return factors
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time.

def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
 if n % k == 0:
 factors += 2
 k += 1
 if k * k == n:
 factors += 1
return factors

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>$\Theta(\sqrt{n})$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Exponentiation
Exponentiation

Goal: one more multiplication lets us double the problem size.
Exponentiation

Goal: one more multiplication lets us double the problem size.

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)
```
Exponentiation

Goal: one more multiplication lets us double the problem size.

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases}
\]

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)
```
Exponentiation

Goal: one more multiplication lets us double the problem size.

```
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)
```

\[b^n = \begin{cases}
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases} \]

\[b^n = \begin{cases}
1 & \text{if } n = 0 \\
 (b^{\frac{1}{2n}})^2 & \text{if } n \text{ is even} \\
 b \cdot b^{n-1} & \text{if } n \text{ is odd}
\end{cases} \]
Exponentiation

Goal: one more multiplication lets us double the problem size.

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)

def square(x):
    return x**x
```

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases}
\]

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
 (b^{\frac{1}{2}})^{2n} & \text{if } n \text{ is even} \\
 b \cdot b^{n-1} & \text{if } n \text{ is odd}
\end{cases}
\]
Exponentiation

Goal: one more multiplication lets us double the problem size.

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
b \cdot b^{n-1} & \text{otherwise}
\end{cases}
\]

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)

def square(x):
    return x*x

def fast_exp(b, n):
    \[
    b^n = \begin{cases} 
1 & \text{if } n = 0 \\ 
(b^{\frac{1}{2}})^2 & \text{if } n \text{ is even} \\ 
b \cdot b^{n-1} & \text{if } n \text{ is odd}
\end{cases}
\]
```
Exponentiation

Goal: one more multiplication lets us double the problem size.

\[
b^n = \begin{cases}
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases}
\]

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)

def square(x):
    return x*x

def fast_exp(b, n):
    if n == 0:
        return 1
    if n is even:
        return (b**(1/2)**n)**2  
    else:
        return b * b**(n-1)
```
Exponentiation

Goal: one more multiplication lets us double the problem size.

\[b^n = \begin{cases}
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases} \]

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)

def square(x):
    return x*x

def fast_exp(b, n):
    if n == 0:
        return 1
    if n % 2 == 0:
        return square(fast_exp(b, n//2))
```
Exponentiation

Goal: one more multiplication lets us double the problem size.

\[
\begin{align*}
b^n &= \begin{cases}
0 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise}
\end{cases} \\
b^n &= \begin{cases}
1 & \text{if } n = 0 \\
(b^{1/2n})^2 & \text{if } n \text{ is even} \\
 b \cdot b^{n-1} & \text{if } n \text{ is odd}
\end{cases}
\end{align*}
\]

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)

def square(x):
    return x*x

def fast_exp(b, n):
    if n == 0:
        return 1
    if n % 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
```
Exponentiation

Goal: one more multiplication lets us double the problem size.

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>

def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

def square(x):
 return x*x
def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)
Exponentiation

Goal: one more multiplication lets us double the problem size.

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
</tbody>
</table>

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)

def square(x):
    return x*x

def fast_exp(b, n):
    if n == 0:
        return 1
    if n % 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
```
Exponentiation

Goal: one more multiplication lets us double the problem size.

```python
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n-1)

def square(x):
    return x*x

def fast_exp(b, n):
    if n == 0:
        return 1
    if n % 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Comparing orders of growth (n is the problem size)
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.

$\Theta(n^2)$
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes

$\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales R(n) by a factor.

$\Theta(n^2)$ Quadratic growth. E.g., operations on all pairs.
Comparing orders of growth (n is the problem size)

\(\Theta(b^n)\) Exponential growth! Recursive fib takes
\(\Theta(\phi^n)\) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828\)

Incrementing the problem scales \(R(n)\) by a factor.

\(\Theta(n^2)\) Quadratic growth. E.g., operations on all pairs.

Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
Comparing orders of growth (n is the problem size)

\[\Theta(b^n) \] Exponential growth! Recursive fib takes \(\Theta(\phi^n) \) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales R(n) by a factor.

\[\Theta(n^2) \] Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

\[\Theta(n) \]
Comparing orders of growth (n is the problem size)

\(\Theta(b^n) \) Exponential growth! Recursive fib takes \(\Theta(\phi^n) \) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales \(R(n) \) by a factor.

\(\Theta(n^2) \) Quadratic growth. E.g., operations on all pairs.

Incrementing \(n \) increases \(R(n) \) by the problem size \(n \).

\(\Theta(n) \) Linear growth. Resources scale with the problem.
Comparing orders of growth (n is the problem size)

\(\Theta(b^n) \) Exponential growth! Recursive fib takes \(\Theta(\phi^n) \) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales \(R(n) \) by a factor.

\(\Theta(n^2) \) Quadratic growth. E.g., operations on all pairs.

Incrementing \(n \) increases \(R(n) \) by the problem size \(n \).

\(\Theta(n) \) Linear growth. Resources scale with the problem.

\(\Theta(\log n) \)
Comparing orders of growth (n is the problem size)

\(\Theta(b^n) \) Exponential growth! Recursive fib takes \(\Theta(\phi^n) \) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales \(R(n) \) by a factor.

\(\Theta(n^2) \) Quadratic growth. E.g., operations on all pairs.

Incrementing \(n \) increases \(R(n) \) by the problem size \(n \).

\(\Theta(n) \) Linear growth. Resources scale with the problem.

\(\Theta(\log n) \) Logarithmic growth. These processes scale well.
Comparing orders of growth (n is the problem size)

\(\Theta(b^n) \) Exponential growth! Recursive fib takes \(\Theta(\phi^n) \) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales \(R(n) \) by a factor.

\(\Theta(n^2) \) Quadratic growth. E.g., operations on all pairs.

Incrementing \(n \) increases \(R(n) \) by the problem size \(n \).

\(\Theta(n) \) Linear growth. Resources scale with the problem.

\(\Theta(\log n) \) Logarithmic growth. These processes scale well.

Doubling the problem only increments \(R(n) \).
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales R(n) by a factor.

$\Theta(n^2)$ Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

$\Theta(n)$ Linear growth. Resources scale with the problem.

$\Theta(\log n)$ Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

$\Theta(1)$
Comparing orders of growth (n is the problem size)

\(\Theta(b^n) \) Exponential growth! Recursive fib takes \(\Theta(\phi^n) \) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales \(R(n) \) by a factor.

\(\Theta(n^2) \) Quadratic growth. E.g., operations on all pairs.

Incrementing \(n \) increases \(R(n) \) by the problem size \(n \).

\(\Theta(n) \) Linear growth. Resources scale with the problem.

\(\Theta(\log n) \) Logarithmic growth. These processes scale well.

Doubling the problem only increments \(R(n) \).

\(\Theta(1) \) Constant. The problem size doesn't matter.
Comparing orders of growth (n is the problem size)

- $\Theta(b^n)$: Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$
 - Incrementing the problem scales R(n) by a factor.

- $\Theta(n^2)$: Quadratic growth. E.g., operations on all pairs.
 - Incrementing n increases R(n) by the problem size n.

- $\Theta(n)$: Linear growth. Resources scale with the problem.

- $\Theta(\log n)$: Logarithmic growth. These processes scale well.
 - Doubling the problem only increments R(n).

- $\Theta(1)$: Constant. The problem size doesn't matter.
Comparing orders of growth (n is the problem size)

Θ(\(b^n\))	Exponential growth! Recursive fib takes \(\Theta(\phi^n)\) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828\)
Θ(\(n^6\))	Incrementing the problem scales R(n) by a factor.
Θ(\(n^2\))	Quadratic growth. E.g., operations on all pairs. Incrementing n increases R(n) by the problem size n.
Θ(\(n\))	Linear growth. Resources scale with the problem.
Θ(\(\log n\))	Logarithmic growth. These processes scale well. Doubling the problem only increments R(n).
Θ(1)	Constant. The problem size doesn't matter.
Comparing orders of growth (n is the problem size)

\[\Theta(b^n) \] Exponential growth! Recursive fib takes \(\Theta(\phi^n) \) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

\[\Theta(n^6) \] Incrementing the problem scales \(R(n) \) by a factor.

\[\Theta(n^2) \] Quadratic growth. E.g., operations on all pairs. Incrementing \(n \) increases \(R(n) \) by the problem size \(n \).

\[\Theta(n) \] Linear growth. Resources scale with the problem.

\[\Theta(\sqrt{n}) \] Logarithmic growth. These processes scale well.

\[\Theta(\log n) \] Doubling the problem only increments \(R(n) \).

\[\Theta(1) \] Constant. The problem size doesn't matter.