Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```python
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
    right = fib_tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```python
def count_factors(n):
    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    sqrt_n = sqrt(n)
    k, factors = 1, 0
    while k < sqrt_n:
        if n % k == 0:
            factors *= 2
            k += 1
        if k * k == n:
            factors += 1
    return factors
```

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments

Fibonacci Memory Consumption

Assume we have reached this step
Fibonacci Memory Consumption

- `fib(6)`
- `fib(4)`
- `fib(2)`
- `fib(1)`
- `fib(0)`

- Has an active environment
- Can be reclaimed
- Hasn’t yet been created

Order of Growth

A method for bounding the resources used by a function as the “size” of a problem increases.

- **n: size of the problem**
- **$R(n)$**: Measurement of some resource used (time or space)

$$R(n) = \Theta(f(n))$$

means that there are positive constants k_1 and k_2 such that

$$k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n)$$

for sufficiently large values of n.

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

Implementation of the same functional abstraction can require different amounts of time.

- **Memoized Implementation**
  ```python
  @memo
def fib(n):
      if n == 0:
          return 0
      if n == 1:
          return 1
      return fib(n-2) + fib(n-1)
  ```

The Consumption of Time

- **Implementation of Time**
  ```python
  def count_factors(n):
      factors = 0
      for k in range(1, n+1):
          if n % k == 0:
              factors += 1
      return factors
  ```

Exponentiation

Goal: one more multiplication lets us double the problem size.

- **Memoized Implementation**
  ```python
  def exp(b, n):
      if n == 0:
          return 1
      if n % 2 == 0:
          return b * exp(b, n-1)
      return b * exp(b, n-1)
  ```

- **Square Implementation**
  ```python
  def square(x):
      return x*x
  ```

- **Fast Exponentiation**
  ```python
  def fast_exp(b, n):
      if n == 0:
          return 1
      if n % 2 == 0:
          return square(fast_exp(b, n//2))
      else:
          return b * fast_exp(b, n-1)
  ```
Comparing orders of growth (n is the problem size)

$\Theta(n^n)$	Exponential growth! Recursive fib takes $\Theta(n^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$
$\Theta(n^6)$	Incrementing the problem scales $R(n)$ by a factor.
$\Theta(n^2)$	Quadratic growth. E.g., operations on all pairs. Incrementing n increases $R(n)$ by the problem size n.
$\Theta(n)$	Linear growth. Resources scale with the problem.
$\Theta(\sqrt{n})$	
$\Theta(\log n)$	Logarithmic growth. These processes scale well. Doubling the problem only increments $R(n)$.
$\Theta(1)$	Constant. The problem size doesn't matter.