Sets

One more built-in Python container type
- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```python
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True

>>> len(s)
4

>>> s.union({1, 5})
{1, 2, 3, 4, 5}

>>> s.intersection({6, 5, 4, 3})
{3}
```

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items

```python
def empty(s):
    return s is Rlist.empty
def set_contains(s, v):
    if empty(s):
        return False
    elif s.first == v:
        return True
    return set_contains(s.rest, v)
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    return Rlist(v, s)
def intersect_set(set1, set2):
    f = lambda v: set_contains(set2, v)
    return filter_rlist(set1, f)
def union_set(set1, set2):
    f = lambda v: not set_contains(set2, v)
    set1_not_set2 = filter_rlist(set1, f)
    return extend_rlist(set1_not_set2, set2)
```

Sets as Unordered Sequences

Time order of growth

- \(\Theta(n)\) for the size of the set
- \(\Theta(n^2)\) assuming sets are the same size

Review: Order of Growth

For a set operation that takes \("linear"\) time, we say that

- \(n\): size of the set
- \(R(n)\): number of steps required to perform the operation

\[R(n) = \Theta(n) \]

which means that there are positive constants \(k_1\) and \(k_2\) such that

\[k_1 \cdot n \leq R(n) \leq k_2 \cdot n \]

for sufficiently large values of \(n\).
Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest.

```python
def set_contains2(s, v):
    if empty(s) or s.first > v:
        return False
    elif s.first == v:
        return True
    return set_contains2(s.rest, v)
```

Order of growth? $\Theta(n)$

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```python
def intersect_set2(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    e1, e2 = set1.first, set2.first
    if e1 == e2:
        rest = intersect_set2(set1.rest, set2.rest)
        return Rlist(e1, rest)
    elif e1 < e2:
        return intersect_set2(set1.rest, set2)
    elif e2 < e1:
        return intersect_set2(set1, set2.rest)
```

Order of growth? $\Theta(n)$

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
- Larger than all entries in its left branch and
- Smaller than all entries in its right branch

```plaintext
  7
 /  \
3  9
 / \
1  5 11
```

Membership in Tree Sets

Set membership tests traverse the tree
- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```python
def set_contains3(s, v):
    if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains3(s.right, v)
    elif s.entry > v:
        return set_contains3(s.left, v)
```

Order of growth?

Adjoining to a Tree Set

```plaintext
  8
 /  \
5  \
3  9
 / \
1  7 11
```

What Did I Leave Out?

Sets as ordered sequences:
- Adjoining an element to a set
- Union of two sets
Sets as binary trees:
- Intersection of two sets
- Union of two sets

That's homework 8!

No lecture on Wednesday
Midterm 2 tomorrow, 7pm-9pm
Good luck!