Announcements

• Homework 2 due Tuesday 9/17 @ 11:59pm

• Project 2 due Thursday 9/19 @ 11:59pm

• Optional Guerrilla section next Monday for students to master higher-order functions
 ▪ Organized by Andrew Huang and the readers
 ▪ Work in a group on a problem until everyone in the group understands the solution

• Midterm 1 on Monday 9/23 from 7pm to 9pm
 ▪ Details and review materials will be posted early next week
 ▪ There will be a web form for students who cannot attend due to a conflict
Lambda Expressions

(Demo)
Lambda Expressions

>>> ten = 10

An expression: this one evaluates to a number

>>> square = x * x

Also an expression: evaluates to a function

>>> square = lambda x: x * x

Important: No "return" keyword!

A function

with formal parameter x

that returns the value of "x * x"

>>> square(4)

16

Must be a single expression

Lambda expressions are not common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!
Lambda Expressions Versus Def Statements

square = lambda x: x * x

VS

def square(x):
 return x * x

• Both create a function with the same domain, range, and behavior.
• Both functions have as their parent the environment in which they were defined.
• Both bind that function to the name square.
• Only the def statement gives the function an intrinsic name.

Example: http://goo.gl/XH54uE
Currying
Function Currying

```
def make_adder(n):
    return lambda k: n + k
```

```python
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions (Demo)

Currying: Transforming a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.

Schönfinkeling?
Newton's Method
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.

The positive zero of $f(x) = x^2 - a$ is \sqrt{a}. (We're solving the equation $x^2 = a$.)
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f'(x)$
3. Update guess x to be:
 $$x - \frac{f(x)}{f'(x)}$$

Finish when $f(x) = 0$ (or close enough)

Using Newton's Method

How to find the square root of 2?

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]

How to find the cube root of 729?

\[g(x) = x^3 - 729 \]
\[g'(x) = 3x^2 \]
Iterative Improvement
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: $x = \frac{x + \frac{a}{x}}{2}$

Implementation questions:

What guess should start the computation?

How do we know when we are finished?
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess \(x \) about the cube root of \(a \)

Update: \[x = \frac{2 \cdot x + \frac{a}{x^2}}{3} \]

Implementation questions:

- What guess should start the computation?
- How do we know when we are finished?
Implementing Newton's Method

(Demo)