Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm
 • 2 review sessions on Saturday 9/21 2pm–4pm and 4pm–6pm in 1 Pimentel
 • HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB
 • Extra office hours over the weekend
 • Includes topics up to and including this lecture
 • Fill out the form on the website if you cannot attend

• Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm
 • It contains lots of recursion problems, for practice!

• Optional Hog strategy contest ends Thursday 10/3 @ 11:59pm
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
• To enter: submit proj1contest with a file hog.py that defines a final_strategy function by Thursday 10/3 @ 11:59pm
• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Fall 2011 Winners
Keegan Mann,
Yan Duan & Ziming Li,
Brian Prike & Zhenghao Qian,
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan,
Joseph Hui

Fall 2013 Winners
YOUR NAME COULD BE HERE...
FOREVER!

http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html
Order of Recursive Calls
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
cascade(n//10)
cascade(123)
```

Program output:
```
123
12
1
12
```

(Demo)

- Each `cascade` frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Example: http://goo.gl/090qzK
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better.
- In this case, the longer implementation is more clear (at least to me).
- When learning to write recursive functions, put the base cases first.
- Both are recursive functions, even though only the first has typical structure.
Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
n & : 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots, 35 \\
fib(n) & : 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 5,702,887 \\
\end{align*}
\]

```python
def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of \texttt{fib} evolves into a tree structure

![Diagram showing the tree-recursive process of the Fibonacci sequence]
Repetition in Tree-Recursive Computation

This process is highly repetitive; `fib` is called on the same argument multiple times.

We can speed up this computation dramatically in a few weeks by remembering results.
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{partition}(6, 4)
\]

\[
\begin{align*}
2 + 4 & = 6 \\
1 + 1 + 4 & = 6 \\
3 + 3 & = 6 \\
1 + 2 + 3 & = 6 \\
1 + 1 + 1 + 3 & = 6 \\
2 + 2 + 2 & = 6 \\
1 + 1 + 2 + 2 & = 6 \\
1 + 1 + 1 + 1 + 2 & = 6 \\
1 + 1 + 1 + 1 + 1 + 1 & = 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{partition}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{partition}(2, 4) \)
 - \(\text{partition}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - partition(2, 4)
 - partition(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)

Winning Hog
How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

\[
\text{Number of ways to score at least } k
\]
\[
\text{Number of possible rolls}
\]

The number of possible rolls is $\text{pow}(6, n)$.

The number of ways to score at least k in n rolls can be computed using tree recursion!

Sum over each possible dice outcome d that does not \text{pig out}: the number of ways to score at least $k - d$ points using $n - 1$ rolls.

\text{Base case:} The number of ways to score at least 0 is $\text{pow}(5, n)$.

\text{Base case:} The number of ways to score positive points in 0 rolls is 0.