Announcements
Announcements

• Homework 6 is due Tuesday 10/22 @ 11:59pm
Announcements

* Homework 6 is due Tuesday 10/22 @ 11:59pm
* Project 3 is due Thursday 10/24 @ 11:59pm
Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Project 3 is due Thursday 10/24 @ 11:59pm
- Midterm 2 is on Monday 10/28 7pm–9pm
Announcements

• Homework 6 is due Tuesday 10/22 @ 11:59pm
• Project 3 is due Thursday 10/24 @ 11:59pm
• Midterm 2 is on Monday 10/28 7pm–9pm
• Hog strategy contest winners will be announced on Wednesday 10/16 in lecture
Memoization
Memoization

Idea: Remember the results that have been computed before
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
```
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
```
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}  
def memoized(n):
```

```python
```
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}

def memoized(n):
    if n not in cache:
```
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
    return memoized
```
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}

def memoized(n):
    if n not in cache:
        cache[n] = f(n)
    return cache[n]
```
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```

Keys are arguments that map to return values
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```

Keys are arguments that map to return values

Same behavior as f, if f is a pure function
Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}

def memoized(n):
    if n not in cache:
        cache[n] = f(n)
    return cache[n]

return memoized
```

Keys are arguments that map to return values

Same behavior as f, if f is a pure function

(Demo)
Memoized Tree Recursion
Memoized Tree Recursion
Memoized Tree Recursion

Call to fib_tree
Memoized Tree Recursion

Call to fib_tree

Found in cache
Memoized Tree Recursion

Call to fib_tree

Found in cache
Memoized Tree Recursion

Call to fib_tree

Found in cache
Memoized Tree Recursion

Call to fib_tree
Found in cache
Memoized Tree Recursion

Call to fib_tree

Found in cache
Memoized Tree Recursion

Call to fib_tree

Found in cache
Memoized Tree Recursion

Call to fib_tree

Found in cache
Memoized Tree Recursion

Call to fib_tree

Found in cache
Memoized Tree Recursion

![Diagram of memoized tree recursion with nodes labeled with numbers. Blue circles represent calls to `fib_tree`, and red circles indicate found values in cache. The tree structure shows the recursive calls forming a tree with cached values marked.](image)
Memoized Tree Recursion

Call to fib_tree

Distinct trees with memoization:
Distinct trees without memoization:

fib_tree(35)
Memoized Tree Recursion

Call to fib_tree
Found in cache

Distinct trees with memoization: 35
Distinct trees without memoization:
Memoized Tree Recursion

\[
\text{fib_tree(35)}
\]

Distinct trees with memoization: 35
Distinct trees without memoization: 18,454,929
Time
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

```python
def count_factors(n):
```
Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

```python
def count_factors(n):
    
    **Slow:** Test each $k$ from 1 through $n$.
```
Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer \(n \) have?

A factor \(k \) of \(n \) is a positive integer such that \(n/k \) is also a positive integer.

```python
def count_factors(n):
    
    **Slow:** Test each \( k \) from 1 through \( n \).

    **Fast:** Test each \( k \) from 1 to square root \( n \).
    For every \( k \), \( n/k \) is also a factor!
Implementations of the same functional abstraction can require different amounts of time to compute their result.

**Problem:** How many factors does a positive integer \( n \) have?

A factor \( k \) of \( n \) is a positive integer such that \( n/k \) is also a positive integer.

```python
def count_factors(n):

 Slow: Test each \(k \) from 1 through \(n \).

 Fast: Test each \(k \) from 1 to square root \(n \).
 For every \(k \), \(n/k \) is also a factor!
```
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

**Problem:** How many factors does a positive integer \( n \) have?

A factor \( k \) of \( n \) is a positive integer such that \( n/k \) is also a positive integer.

```python
def count_factors(n):
 Time (number of divisions)

 Slow: Test each \(k \) from 1 through \(n \).

 \[n \]

 Fast: Test each \(k \) from 1 to square root \(n \).
 For every \(k \), \(n/k \) is also a factor!
```
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

**Problem:** How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n/k$ is also a positive integer.

```python
def count_factors(n):
 # Time (number of divisions)
 # Slow: Test each k from 1 through n.
 # Fast: Test each k from 1 to square root n.
 # For every k, n/k is also a factor!
```

<table>
<thead>
<tr>
<th>Time (number of divisions)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow: Test each k from 1 through n.</td>
<td></td>
</tr>
<tr>
<td>Fast: Test each k from 1 to square root n.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\sqrt{n}]$</td>
<td></td>
</tr>
</tbody>
</table>
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

**Problem**: How many factors does a positive integer \( n \) have?

A factor \( k \) of \( n \) is a positive integer such that \( n/k \) is also a positive integer.

```python
def count_factors(n):
 # Time (number of divisions)
 # Slow: Test each k from 1 through n.
 # Fast: Test each k from 1 to square root n.
 # For every k, n/k is also a factor!

 # (Demo)
```
Space
The Consumption of Space
The Consumption of Space

Which environment frames do we need to keep during evaluation?
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of **active environments**.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

**Active environments:**
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

Active environments:

• Environments for any function calls currently being evaluated
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of **active** environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

**Active environments:**

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments
The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments

(Demo)
Fibonacci Memory Consumption

```
fib(6)
 /
fib(4) fib(5)
 /
fib(2) fib(3)
 /
 1 fib(1) fib(2)
 /
 0 1

fib(4)
 /
fib(2) fib(3)
 /
 1 fib(1) fib(2)
 /
 0 1

fib(5)
 /
fib(3) fib(4)
 /
 fib(1) fib(2) fib(2) fib(3)
 /
 0 1 1 fib(1) fib(2)
 /
 0 1
```
Fibonacci Memory Consumption

Assume we have reached this step.
Fibonacci Memory Consumption

Assume we have reached this step
Fibonacci Memory Consumption

Has an active environment

Assume we have reached this step
Fibonacci Memory Consumption

Has an active environment
Can be reclaimed

Assume we have reached this step
Fibonacci Memory Consumption

Assume we have reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created
Order of Growth
Order of Growth
Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

\( n \): size of the problem
Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

\( n \): size of the problem

\( R(n) \): Measurement of some resource used (time or space)
**Order of Growth**

A method for bounding the resources used by a function by the "size" of a problem

\(n\): size of the problem

\(R(n)\): Measurement of some resource used (time or space)

\[ R(n) = \Theta(f(n)) \]
Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

\( n \): size of the problem

\( R(n) \): Measurement of some resource used (time or space)

\[ R(n) = \Theta(f(n)) \]

means that there are positive constants \( k_1 \) and \( k_2 \) such that
Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

$n$: size of the problem

$R(n)$: Measurement of some resource used (time or space)

\[ R(n) = \Theta(f(n)) \]

means that there are positive constants $k_1$ and $k_2$ such that

\[ k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n) \]
Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

$n$: size of the problem

$R(n)$: Measurement of some resource used (time or space)

$$R(n) = \Theta(f(n))$$

means that there are positive constants $k_1$ and $k_2$ such that

$$k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n)$$

for sufficiently large values of $n$. 
Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```python
def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

@memo
def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

```python
def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

@memo
def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)
```
Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```python
def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

@memo
def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```python
@memo
def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ(n)</td>
<td>Θ(1)</td>
</tr>
</tbody>
</table>

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib_iter(n)</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>fib(n)</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
</tbody>
</table>

```python
def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

@memo
def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)
```
Counting Factors

Order of growth can still be used, even if we can quantify amounts exactly.

**Problem**: How many factors does a positive integer \( n \) have?

A factor \( k \) of \( n \) is a positive integer such that \( n/k \) is also a positive integer.

```
def count_factors(n)"
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>

**Slow**: Test each \( k \) from 1 to \( n \).

**Fast**: Test each \( k \) from 1 to square root \( n \).
For every \( k \), \( n/k \) is also a factor!
**Counting Factors**

Order of growth can still be used, even if we can quantify amounts exactly.

**Problem:** How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n/k$ is also a positive integer.

\[
\text{def count_factors}(n)"
\]

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>

**Slow:** Test each $k$ from 1 to $n$.

**Fast:** Test each $k$ from 1 to square root $n$.

For every $k$, $n/k$ is also a factor!
Counting Factors

Order of growth can still be used, even if we can quantify amounts exactly.

**Problem:** How many factors does a positive integer \( n \) have?

A factor \( k \) of \( n \) is a positive integer such that \( n/k \) is also a positive integer.

```python
def count_factors(n):
 # Time complexity
 # Θ(n)
 # Space complexity
 # Θ(1)
```

**Slow:** Test each \( k \) from 1 to \( n \).

**Fast:** Test each \( k \) from 1 to square root \( n \).
For every \( k \), \( n/k \) is also a factor!

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ(( n ))</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>Θ(( \sqrt{n} ))</td>
<td>Θ(1)</td>
</tr>
</tbody>
</table>
Exponentiation
Exponentiation
Exponentiation

**Goal:** one more multiplication lets us double the problem size.
Exponentiation

**Goal:** one more multiplication lets us double the problem size.

```python
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)
```


**Exponentiation**

**Goal:** one more multiplication lets us double the problem size.

```python
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)
```

\[ b^n = \begin{cases} 
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise} 
\end{cases} \]
Exponentiation

**Goal:** one more multiplication lets us double the problem size.

```python
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)
```

\[
b^n = \begin{cases} 
1 & \text{if } n = 0 \\
 b \cdot b^{n-1} & \text{otherwise} 
\end{cases}
\]

\[
b^n = \begin{cases} 
1 & \text{if } n = 0 \\
 (b^{\frac{1}{2}})^n & \text{if } n \text{ is even} \\
 b \cdot b^{n-1} & \text{if } n \text{ is odd} 
\end{cases}
\]
Exponentiation

**Goal:** one more multiplication lets us double the problem size.

\[
b^n = \begin{cases} 
1 & \text{if } n = 0 \\
b \cdot b^{n-1} & \text{otherwise}
\end{cases}
\]

```python
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def square(x):
 return x*x

def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)
```
Exponentiation

**Goal:** one more multiplication lets us double the problem size.

\[
b^n = \begin{cases} 
  1 & \text{if } n = 0 \\
  b \cdot b^{n-1} & \text{otherwise} 
\end{cases}
\]

```python
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def square(x):
 return x*x

def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)
```

(Demo)
Exponentiation

**Goal:** one more multiplication lets us double the problem size.

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
</table>

```python
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def square(x):
 return x*x

def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)
```
Exponentiation

**Goal:** one more multiplication lets us double the problem size.

```
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def square(x):
 return x*x

def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>
Exponentiation

**Goal:** one more multiplication lets us double the problem size.

```
def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

def square(x):
 return x*x

def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)
```

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Θ(n)</td>
<td>Θ(n)</td>
</tr>
<tr>
<td></td>
<td>Θ(log n)</td>
<td>Θ(log n)</td>
</tr>
</tbody>
</table>
Comparing Orders of Growth
Comparing orders of growth (n is the problem size)
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$
Comparing orders of growth (n is the problem size)

\[ \Theta(b^n) \quad \text{Exponential growth!} \quad \text{Recursive fib takes} \]

\[ \Theta(\phi^n) \quad \text{steps, where} \quad \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \]
Comparing orders of growth (n is the problem size)

\[ \Theta(b^n) \]  Exponential growth! Recursive fib takes
\[ \Theta(\phi^n) \] steps, where \( \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales \( R(n) \) by a factor.
Comparing orders of growth (n is the problem size)

\( \Theta(b^n) \)  Exponential growth! Recursive fib takes

\( \Theta(\phi^n) \) steps, where \( \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales \( R(n) \) by a factor.

\( \Theta(n^2) \)
Comparing orders of growth (n is the problem size)

\( \Theta(b^n) \)  Exponential growth! Recursive fib takes

\( \Theta(\phi^n) \)  steps, where  \( \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)

Incrementing the problem scales R(n) by a factor.

\( \Theta(n^2) \)  Quadratic growth. E.g., operations on all pairs.
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes

$\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.

$\Theta(n^2)$ Quadratic growth. E.g., operations on all pairs.

Incrementing $n$ increases $R(n)$ by the problem size $n$. 
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.

$\Theta(n^2)$ Quadratic growth. E.g., operations on all pairs.

Incrementing $n$ increases $R(n)$ by the problem size $n$.

$\Theta(n)$
Comparing orders of growth (n is the problem size)

$\Theta(b^n)$ Exponential growth! Recursive fib takes
$\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales R(n) by a factor.

$\Theta(n^2)$ Quadratic growth. E.g., operations on all pairs.
Incrementing n increases R(n) by the problem size n.

$\Theta(n)$ Linear growth. Resources scale with the problem.
### Comparing orders of growth (n is the problem size)

<table>
<thead>
<tr>
<th>Growth Order</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(b^n)$</td>
<td>Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$ Incrementing the problem scales $R(n)$ by a factor.</td>
</tr>
<tr>
<td>$\Theta(n^2)$</td>
<td>Quadratic growth. E.g., operations on all pairs. Incrementing $n$ increases $R(n)$ by the problem size $n$.</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>Linear growth. Resources scale with the problem.</td>
</tr>
<tr>
<td>$\Theta(\log n)$</td>
<td></td>
</tr>
</tbody>
</table>

Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$ Incrementing the problem scales $R(n)$ by a factor.
Comparing orders of growth (n is the problem size)

\( \Theta(b^n) \) Exponential growth! Recursive fib takes
\( \Theta(\phi^n) \) steps, where \( \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)
Incrementing the problem scales \( R(n) \) by a factor.

\( \Theta(n^2) \) Quadratic growth. E.g., operations on all pairs.
Incrementing \( n \) increases \( R(n) \) by the problem size \( n \).

\( \Theta(n) \) Linear growth. Resources scale with the problem.

\( \Theta(\log n) \) Logarithmic growth. These processes scale well.
Comparing orders of growth (n is the problem size)

\( \Theta(b^n) \) Exponential growth! Recursive fib takes
\( \Theta(\phi^n) \) steps, where \( \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)
Incrementing the problem scales \( R(n) \) by a factor.

\( \Theta(n^2) \) Quadratic growth. E.g., operations on all pairs.
Incrementing \( n \) increases \( R(n) \) by the problem size \( n \).

\( \Theta(n) \) Linear growth. Resources scale with the problem.

\( \Theta(\log n) \) Logarithmic growth. These processes scale well.
Doubling the problem only increments \( R(n) \).
## Comparing orders of growth (n is the problem size)

<table>
<thead>
<tr>
<th>Growth Order</th>
<th>Description</th>
<th>Example</th>
<th>Increment Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(b^n)$</td>
<td>Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$</td>
<td>$n = 1 + \sqrt{5}$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$</td>
<td>Incrementing the problem scales $R(n)$ by a factor.</td>
</tr>
<tr>
<td>$\Theta(n^2)$</td>
<td>Quadratic growth. E.g., operations on all pairs.</td>
<td>Incrementing $n$ increases $R(n)$ by the problem size $n$.</td>
<td></td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>Linear growth. Resources scale with the problem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta(\log n)$</td>
<td>Logarithmic growth. These processes scale well.</td>
<td>Doubling the problem only increments $R(n)$.</td>
<td></td>
</tr>
</tbody>
</table>
Comparing orders of growth (n is the problem size)

\( \Theta(b^n) \)  Exponential growth! Recursive fib takes 
\( \Theta(\phi^n) \) steps, where \( \phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828 \)
Incrementing the problem scales \( R(n) \) by a factor.

\( \Theta(n^2) \)  Quadratic growth. E.g., operations on all pairs.
Incrementing \( n \) increases \( R(n) \) by the problem size \( n \).

\( \Theta(n) \)  Linear growth. Resources scale with the problem.

\( \Theta(\log n) \)  Logarithmic growth. These processes scale well.
Doubling the problem only increments \( R(n) \).

\( \Theta(1) \)  Constant. The problem size doesn't matter.
Comparing orders of growth (n is the problem size)

- **Θ\(\left( b^n \right) \)**: Exponential growth! Recursive fib takes \(\Theta\left( \phi^n \right)\) steps, where \(\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828\).
  - Incrementing the problem scales \(R(n)\) by a factor.
- **Θ\(\left( n^2 \right) \)**: Quadratic growth. E.g., operations on all pairs.
  - Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
- **Θ\(\left( n \right) \)**: Linear growth. Resources scale with the problem.
- **Θ\(\left( \log n \right) \)**: Logarithmic growth. These processes scale well.
  - Doubling the problem only increments \(R(n)\).
- **Θ\(\left( 1 \right) \)**: Constant. The problem size doesn't matter.
Comparing orders of growth (n is the problem size)

- $\Theta(b^n)$: Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$.
- $\Theta(n^6)$: Incrementing the problem scales $R(n)$ by a factor.
- $\Theta(n^2)$: Quadratic growth. E.g., operations on all pairs. Incrementing $n$ increases $R(n)$ by the problem size $n$.
- $\Theta(n)$: Linear growth. Resources scale with the problem.
- $\Theta(\log n)$: Logarithmic growth. These processes scale well. Doubling the problem only increments $R(n)$.
- $\Theta(1)$: Constant. The problem size doesn't matter.
Comparing orders of growth (n is the problem size)

- $\Theta(b^n)$: Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$
- $\Theta(n^6)$: Incrementing the problem scales $R(n)$ by a factor.
- $\Theta(n^2)$: Quadratic growth. E.g., operations on all pairs. Incrementing $n$ increases $R(n)$ by the problem size $n$.
- $\Theta(n)$: Linear growth. Resources scale with the problem.
- $\Theta(\sqrt{n})$: Logarithmic growth. These processes scale well.
- $\Theta(\log n)$: Doubling the problem only increments $R(n)$.
- $\Theta(1)$: Constant. The problem size doesn't matter.