Memoization

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```

Keys are arguments that map to return values

Same behavior as f, if f is a pure function

(Demo)

Memoized Tree Recursion

- Call to `fib_tree`
- Found in cache

```
fib_tree(35)
Distinct trees with memoization: 25
Distinct trees without memoization: 18,454,929
```
The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer \(n \) have?

A factor \(k \) of \(n \) is a positive integer such that \(n/k \) is also a positive integer.

<table>
<thead>
<tr>
<th>def count_factors(n):</th>
<th>Time (number of divisions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{Slow}: Test each (k) from 1 through (n).</td>
<td>(n)</td>
</tr>
<tr>
<td>\textbf{Fast}: Test each (k) from 1 to square root (n). For every (k), (n/k) is also a factor!</td>
<td>(\lfloor \sqrt{n} \rfloor)</td>
</tr>
</tbody>
</table>

The Consumption of Space

Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of \textit{active} environments.
Values and frames in active environments consume memory.
Memory used for other values and frames can be recycled.

\textbf{Active environments:}
- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments

Fibonacci Memory Consumption

Assume we have reached this step

Order of Growth
Order of Growth

A method for bounding the resources used by a function by the “size” of a problem

- \(m \): size of the problem
- \(R(n) \): Measurement of some resource used (time or space)
 \[R(n) = \Theta(f(n)) \]
 means that there are positive constants \(k_1 \) and \(k_2 \) such that
 \[k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n) \]
 for sufficiently large values of \(n \).

Counting Factors

Order of growth can still be used, even if we can quantify amounts exactly.

Problem: How many factors does a positive integer \(n \) have?

A factor \(k \) of \(n \) is a positive integer such that \(n/k \) is also a positive integer.

def count_factors(n)

- **Slow:** Test each \(k \) from 1 to \(n \).
 \[\Theta(n) \quad \Theta(1) \]
- **Fast:** Test each \(k \) from 1 to \(\sqrt{n} \).
 For every \(k \), \(n/k \) is also a factor!
 \[\Theta(\sqrt{n}) \quad \Theta(1) \]

Exponentiation

Goal: One more multiplication lets us double the problem size.

def exp(b, n):

- If \(n = 0 \): return 1
- Else: return \(b \cdot \exp(b, n-1) \)

def square(x):

def fast_exp(b, n):

- If \(n = 0 \): return 1
- If \(n \) is even: return \((b^{\log_2(n)})^2 \)
- If \(n \) is odd: return \(b \cdot \fast_exp(b, n-1) \)

def square(x):

def fast_exp(b, n):

- If \(n = 0 \): return 1
- If \(n \) is even: return \((b^{1/2})^2 \)
- Else: return \(b \cdot \fast_exp(b, n/2) \)

def square(x):

def fast_exp(b, n):

- If \(n = 0 \): return 1
- If \(n \) is even: return \((b^{1/2})^2 \)
- Else: return \(b \cdot \fast_exp(b, n/2) \)
Comparing orders of growth (n is the problem size)

<table>
<thead>
<tr>
<th>Growth Order</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>Exponential growth</td>
<td>Recursive fib takes (\Theta(n^3)) steps, where (n = 1 + \sqrt{5}/2 \approx 1.61828) steps, where (n = 1 + \sqrt{5}/2 \approx 1.61828)</td>
</tr>
<tr>
<td>(\Theta(n^2))</td>
<td>Quadratic growth</td>
<td>E.g., operations on all pairs. Incrementing (n) increases (R(n)) by (n).</td>
</tr>
<tr>
<td>(\Theta(n))</td>
<td>Linear growth</td>
<td>Resources scale with the problem.</td>
</tr>
<tr>
<td>(\Theta(\sqrt{n}))</td>
<td>Logarithmic growth</td>
<td>These processes scale well. Doubling the problem only increments (R(n)).</td>
</tr>
<tr>
<td>(\Theta(1))</td>
<td>Constant</td>
<td>The problem size doesn’t matter.</td>
</tr>
</tbody>
</table>