Welcome to Berkeley Computer Science!

Fall 2014 office hours:

411 Soda
Tuesday 12pm–1pm
Wednesday 12pm–1pm

781 Soda by appointment
http://denero.org/meet
The Course Staff

Teaching Assistants (UGSIs/GSIs) run discussion sections, labs, and office hours.

18 Readers are your personal programming mentors.
Over 150 Lab Assistants ensure that you don’t get stuck for too long.
Parts of the Course

Lecture: Videos posted to http://cs61a.org before each live lecture

Lab: The most important events in this course

Discussion: Also the most important events in this course

Office Hours: Also the most important events in this course [11-5 every day in 411 Soda]

Online textbook: http://composingprograms.com

Weekly homework assignments, three exams, & four programming projects

Many special events
An Introduction to Computer Science
What is Computer Science?

- What problems can be solved using computation,
- How to solve those problems, and
- What techniques lead to effective solutions.

Systems

Artificial Intelligence

Graphics

Security

Networking

Programming Languages

Theory

Scientific Computing

...
What is This Course About?

• A course about managing complexity
 • Mastering abstraction
 • Programming paradigms
 • Not all about 0's and 1's
• An introduction to Python
 • Full understanding of language fundamentals
 • Learning through implementation
 • How computers interpret programming languages
• A challenging course that will demand a lot of you
Course Policies
Alternatives to This Course

CS 61AS: Self-Paced 61A

CS 10: The Beauty and Joy of Computing
Learning

Community

Course Staff

Details...

http://cs61a.org/about.html
Collaboration

Asking questions is highly encouraged

- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration

- One simple rule: Don’t share your code, except with your partner
- Copying project solutions causes people to fail this course
- We really do catch people who violate the rules, because...
 - We also know how to search the web for solutions
 - We know how to use computers

Build good habits now
Expressions
Types of expressions

An expression describes a computation and evaluates to a value

\[18 + 69 \quad \frac{6}{23} \quad \sin \pi \quad \log_2 1024 \]

\[2^{100} \quad \sum_{i=1}^{100} i \quad \sqrt{3493161} \quad \lim_{x \to \infty} \frac{1}{x} \]

\[f(x) \quad 7 \mod 2 \quad | -1869| \]

\[\binom{69}{18} \]
Call Expressions in Python

All expressions can use function call notation

(Demo)
Anatomy of a Call Expression

Evaluation procedure for call expressions:

1. Evaluate the operator and then the operand subexpressions
2. **Apply** the **function** that is the value of the operator subexpression to the **arguments** that are the values of the operand subexpression

Operators and operands are also expressions

So they evaluate to values
Evaluating Nested Expressions

208
mul(add(2, mul(4, 6)), add(3, 5))

mul
26
add(2, mul(4, 6))

mul
4
6

8
add(3, 5)

add
3
5

24
mul(4, 6)

add
2
Evaluating Nested Expressions

Expression tree:

- Value of the whole expression: 208
- Value of subexpression: 26
- 1st argument to mul: 24
- Operand subexpression: mul(2, mul(4, 6)), add(3, 5)

Expression tree diagram:

- Value of the whole expression: 208
- Value of subexpression: 26
- 1st argument to mul: 24
- Operand subexpression: mul(2, mul(4, 6)), add(3, 5)
Functions, Objects, and Interpreters

(Demo)