Welcome to Berkeley Computer Science!
Soda Hall

John Denero
Fall 2014 office hours:
411 Soda
Tuesday 12pm-1pm
Wednesday 12pm-1pm
781 Soda by appointment
http://denero.org/meet

The Course Staff
Teaching Assistants (UGSIs/GSIs) run discussion sections, labs, and office hours.

18 Readers are your personal programming mentors.
Over 150 Lab Assistants ensure that you don't get stuck for too long.

Parts of the Course
Lecture: Videos posted to http://cs61a.org before each live lecture
Lab: The most important events in this course
Discussion: Also the most important events in this course
Office Hours: Also the most important events in this course [11-5 every day in 411 Soda]
Online textbook: http://composingprograms.com
Weekly homework assignments, three exams, & four programming projects
Many special events

An Introduction to Computer Science
What is Computer Science?
The study of what problems can be solved using computation, how to solve those problems, and what techniques lead to effective solutions.

Systems
- Artificial Intelligence
- Decision Making
- Robotics
- Natural Language Processing
- Answering Questions
- Translation
- Programming Languages
- Theory
- Scientific Computing
-...

What is This Course About?
• A course about managing complexity
• Mastering abstraction
• Programming paradigms
• Not all about 0's and 1's
• An introduction to Python
• Full understanding of language fundamentals
• Learning through implementation
• How computers interpret programming languages
• A challenging course that will demand a lot of you

Course Policies
Collaboration

Asking questions is highly encouraged
- Discuss everything with each other; learn from your fellow students!
- Homework can be completed with a partner
- Projects should be completed with a partner
- Choose a partner from your discussion section

The limits of collaboration
- One simple rule: Don’t share your code, except with your partner
- Copying project solutions causes people to fail this course
- We really do catch people who violate the rules, because...
 - We also know how to search the web for solutions
 - We know how to use computers

Build good habits now

Expressions

Types of expressions

An expression describes a computation and evaluates to a value

\[18 + 69 \]
\[\frac{6}{23} \]
\[\sin \pi \]
\[\log_2 1024 \]
\[2^{100} \]
\[f(x) \]
\[7 \mod 2 \]
\[\frac{\sum_{i=1}^{100} i}{1869} \]
\[\sqrt{100101} \]
\[\lim_{x \to 2} \frac{1}{x} \]

Anatomy of a Call Expression

\[
\text{add} \ (\ 2 \ , \ 3 \)
\]

Operators and operands are also expressions
So they evaluate to values

Evaluation procedure for call expressions:
1. Evaluate the operator and then the operand subexpressions
2. Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpression

Call Expressions in Python

All expressions can use function call notation
(Demos)
Evaluating Nested Expressions

Value of the whole expression
mul(add(2, mul(4, 6)), add(3, 5))

Value of subexpression
mul

1st argument to mul
add(2, mul(4, 6))

Operand subexpression

Value of the whole expression

Expression tree

Functions, Objects, and Interpreters
(Demo)