Announcements
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 ▪ Organized by Andrew Huang and the readers
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 ▪ Organized by Andrew Huang and the readers
 ▪ Work in a group on a problem until everyone in the group understands the solution
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 ▪ Organized by Andrew Huang and the readers
 ▪ Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm–4pm in Wozniak Lounge and 6pm–8pm in 2050 VLSB
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 • Organized by Andrew Huang and the readers
 • Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm–4pm in Wozniak Lounge and 6pm–8pm in 2050 VLSB

• Midterm 1 on Monday 9/22 from 7pm to 9pm
Announcements

- Homework 2 due Monday 9/15 @ 11:59pm

- Project 1 due Wednesday 9/17 @ 11:59pm

- Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 - Organized by Andrew Huang and the readers
 - Work in a group on a problem until everyone in the group understands the solution

- Project party on Monday 9/15, 3pm–4pm in Wozniak Lounge and 6pm–8pm in 2050 VLSB

- Midterm 1 on Monday 9/22 from 7pm to 9pm
 - Details and review materials will be posted next week
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 ▪ Organized by Andrew Huang and the readers
 ▪ Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm–4pm in Wozniak Lounge and 6pm–8pm in 2050 VLSB

• Midterm 1 on Monday 9/22 from 7pm to 9pm
 ▪ Details and review materials will be posted next week
 ▪ There will be a web form for students who cannot attend due to a conflict
Announcements

• Homework 2 due Monday 9/15 @ 11:59pm

• Project 1 due Wednesday 9/17 @ 11:59pm

• Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 ▪ Organized by Andrew Huang and the readers
 ▪ Work in a group on a problem until everyone in the group understands the solution

• Project party on Monday 9/15, 3pm–4pm in Wozniak Lounge and 6pm–8pm in 2050 VLSB

• Midterm 1 on Monday 9/22 from 7pm to 9pm
 ▪ Details and review materials will be posted next week
 ▪ There will be a web form for students who cannot attend due to a conflict

• There's a pinned Piazza thread to find partners
Lambda Expressions

(Demo)
Lambda Expressions
Lambda Expressions

```python
>>> x = 10
```
>>> x = 10

>>> square = x * x

4
Lambda Expressions

```python
>>> x = 10
>>> square = x * x
An expression: this one evaluates to a number
```
Lambda Expressions

>>> x = 10

An expression: this one evaluates to a number

>>> square = \(x \times x\)

>>> square = lambda x: x * x
Lambda Expressions

>>> x = 10

An expression: this one evaluates to a number

>>> square = x * x

Also an expression: evaluates to a function

>>> square = lambda x: x * x
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function
```
Lambda Expressions

>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function
 with formal parameter x
Lambda Expressions

```python
>>> x = 10
>>> square = x * x
>>> square = lambda x: x * x
```

An expression: this one evaluates to a number

Also an expression: evaluates to a function

A function with formal parameter x that returns the value of "x * x"
Lambda Expressions

```python
>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x
```

An expression: this one evaluates to a number

Also an expression: evaluates to a function

A function with formal parameter x that returns the value of "x * x"

Important: No "return" keyword!
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function with formal parameter x
that returns the value of "x * x"
Must be a single expression
```
Lambda Expressions

>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
Important: No "return" keyword!
A function

with formal parameter x
that returns the value of "x * x"

>>> square(4)
16
Must be a single expression
Lambda Expressions

```python
>>> x = 10
>>> square = x * x
>>> square = lambda x: x * x
>>> square(4)
16
```

An expression: this one evaluates to a number

Also an expression: evaluates to a function

Important: No "return" keyword!

A function with formal parameter x that returns the value of "x * x"

Lambda expressions are not common in Python, but important in general
Lambda Expressions

```python
>>> x = 10
>>> square = x * x
>>> square = lambda x: x * x
>>> square(4)
16
```

An expression: this one evaluates to a number

Also an expression: evaluates to a function

Important: No "return" keyword!

Lambda expressions are not common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!
Lambda Expressions Versus Def Statements
Lambda Expressions Versus Def Statements

VS
Lambda Expressions Versus Def Statements

\[
square = \lambda x: x \times x
\]

VS
Lambda Expressions Versus Def Statements

\[\text{square} = \text{lambda } x: x \times x \quad \text{VS} \quad \text{def } \text{square}(x): \quad \text{return } x \times x \]
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x : x \times x \quad \text{VS} \quad \text{def square}(x): \\
\text{\hspace{1cm} return } x \times x
\]

• Both create a function with the same domain, range, and behavior.
Lambda Expressions Versus Def Statements

\[\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x): \quad \text{return } x \times x \]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x): \quad \text{return} \ x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def} \; \text{square}(x): \\
\quad \text{return} \; x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

square = lambda x: x * x
VS
def square(x):
 return x * x

• Both create a function with the same domain, range, and behavior.
• Both functions have as their parent the frame in which they were defined.
• Both bind that function to the name square.
• Only the def statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x
\]

\[
\text{def square}(x):
\quad \text{return } x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x): \]
\[\quad \text{return } x \times x \]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name `square`.
- Only the `def` statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[\text{square} = \lambda x: x \ast x \]

\[\text{def square}(x): \]
\[\quad \text{return } x \ast x \]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x
\]

\[
\text{def square}(x):
\text{return } x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name \text{square}.
- Only the def statement gives the function an intrinsic name.
Currying
Function Currying
def make_adder(n):
 return lambda k: n + k
Function Currying

```python
def make_adder(n):
    return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```
Function Currying

```python
def make_adder(n):
    return lambda k: n + k
```

```bash
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions.
Function Currying

```python
def make_adder(n):
    return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions.
Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general relationship between these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function.
Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general relationship between these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.
Function Currying

```python
def make_adder(n):
    return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions (Demo)

Curry: Transform a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.

Schönfinkeling?
Newton's Method
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

\[f(x) = x^2 - 2 \]

A "zero" of a function \(f \) is an input \(x \) such that \(f(x) = 0 \).
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

A "zero" of a function f is an input x such that $f(x)=0$

$x = 1.414213562373095$

$f(x) = x^2 - 2$
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.
Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

A "zero" of a function f is an input x such that $f(x)=0$.

Application: a method for computing square roots, cube roots, etc.

The positive zero of $f(x) = x^2 - a$ is \sqrt{a}. (We're solving the equation $x^2 = a$.)
Newton's Method

Given a function f and initial guess x,
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:
 \[x - \frac{f(x)}{f'(x)} \]
Newton's Method

Given a function \(f \) and initial guess \(x \),

Repeatedly improve \(x \):

Compute the value of \(f \) at the guess: \(f(x) \)

Compute the derivative of \(f \) at the guess: \(f'(x) \)

Update guess \(x \) to be:

\[
x = x - \frac{f(x)}{f'(x)}
\]
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:

$$x = x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function \(f \) and initial guess \(x \),

Repeatedly improve \(x \):

- Compute the value of \(f \) at the guess: \(f(x) \)
- Compute the derivative of \(f \) at the guess: \(f'(x) \)
- Update guess \(x \) to be:
 \[
 x \leftarrow x - \frac{f(x)}{f'(x)}
 \]
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

- Compute the value of f at the guess: $f(x)$
- Compute the derivative of f at the guess: $f'(x)$
- Update guess x to be:
 $$x - \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x = \frac{f(x)}{f'(x)}$$
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess x to be:

$$x = \frac{f(x)}{f'(x)}$$

Finish when $f(x) = 0$ (or close enough)
Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f'(x)$
3. Update guess x to be:
 $$x - \frac{f(x)}{f'(x)}$$

Finish when $f(x) = 0$ (or close enough)

Using Newton's Method
Using Newton's Method

How to find the square root of 2?
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x*x - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```
Using Newton's Method

How to find the square root of 2?

```python
golden ratio 1

>>> f = lambda x: x*x - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```
Using Newton's Method

How to find the square root of 2?

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
```

1.4142135623730951

Applies Newton's method
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x*x - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

How to find the cube root of 729?

```python
f(x) = x^2 - 2
f'(x) = 2x
```

Applies Newton's method
Using Newton's Method

How to find the square root of 2?

\[f(x) = x^2 - 2 \]

\[f'(x) = 2x \]

>> f = lambda x: x**2 - 2
>> df = lambda x: 2*x
>> find_zero(f, df)

1.4142135623730951

How to find the cube root of 729?

\[\sqrt[3]{V} \]
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x*x - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

\[f(x) = x^2 - 2 \]
\[f'(x) = 2x \]

Applies Newton's method

How to find the cube root of 729?

```python
>>> g = lambda x: x**3 - 729
>>> dg = lambda x: 3*x**2
>>> find_zero(g, dg)
9.0
```

\[g(x) = x^3 - 729 \]
Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
g = lambda x: x**3 - 729
```

How to find the cube root of 729?

```python
>>> df = lambda x: 2*x
>>> dg = lambda x: 3*x**2
```

Applies Newton's method
Iterative Improvement
Special Case: Square Roots
Special Case: Square Roots

How to compute \(\text{square}_\text{root}(a) \)

Idea: Iteratively refine a guess \(x \) about the square root of \(a \)
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

\[
\text{Update: } \quad x = \frac{x + \frac{a}{x}}{2}
\]
Special Case: Square Roots

How to compute $\text{square_root}(a)$

Idea: Iteratively refine a guess x about the square root of a

\[
\text{Update: } \quad x = \frac{x + \frac{a}{x}}{2}
\]

Babylonian Method
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

$\text{Update: } x = \frac{x + \frac{a}{x}}{2}$

Babylonian Method

Implementation questions:
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess \(x \) about the square root of \(a \)

Update:

\[
x = \frac{x + \frac{a}{x}}{2}
\]

Babylonian Method

Implementation questions:

What guess should start the computation?
Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

\[
\text{Update: } x = \frac{x + \frac{a}{x}}{2}
\]

Babylonian Method

Implementation questions:

What guess should start the computation?

How do we know when we are finished?
Special Case: Cube Roots
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:
Special Case: Cube Roots

How to compute \(\text{cube}_\text{root}(a) \)

Idea: Iteratively refine a guess \(x \) about the cube root of \(a \)

Update:

\[
X = \frac{2 \cdot x + \frac{a}{x^2}}{3}
\]
Special Case: Cube Roots

How to compute $\text{cube_root}(a)$

Idea: Iteratively refine a guess x about the cube root of a

Update: \[x = \frac{2 \cdot x + \frac{a}{x^2}}{3} \]

Implementation questions:
Special Case: Cube Roots

How to compute \(\text{cube_root}(a) \)

Idea: Iteratively refine a guess \(x \) about the cube root of \(a \)

\[
\text{Update: } \quad x = \frac{2 \cdot x + \frac{a}{x^2}}{3}
\]

Implementation questions:

What guess should start the computation?
Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

$$x = \frac{2 \cdot x + \frac{a}{x^2}}{3}$$

Implementation questions:

- What guess should start the computation?
- How do we know when we are finished?
Implementing Newton's Method