61A Lecture 6
Friday, September 12

Announcements
- Homework 2 due Monday 9/15 @ 11:59pm
- Project 1 due Wednesday 9/17 @ 11:59pm
- Optional Guerrilla section Saturday 9/13 @ 12:30pm in 306 Soda about higher-order functions
 - Organized by Andrew Huang and the readers
 - Work in a group on a problem until everyone in the group understands the solution
- Project party on Monday 9/15, 3pm-4pm in Wozniak Lounge and 6pm-8pm in 2050 VLSB
- Midterm 1 on Monday 9/22 from 7pm to 9pm
 - Details and review materials will be posted next week
 - There will be a web form for students who cannot attend due to a conflict
- There’s a pinned Piazza thread to find partners

Lambda Expressions

An expression: this one evaluates to a number
Also an expression: evaluates to a function
that returns the value of \(x \times x \)
with formal parameter \(x \)
A function

Lambda expressions are not common in Python, but important in general
Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

square = lambda x: x * x	def square(x):
VS	return x * x

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

Currying

Function Currying

```
def make_adder(k):
    return lambda x: k + x
```

```python
>>> make_adder(2)(3)
5
```

There’s a general relationship between these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.
Newton's Method

Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.
The positive zero of $f(x) = x^2 - a$ is \sqrt{a}.
We're solving the equation $x^2 = a$.

Newton's Method

Given a function f and initial guess x_0,

- Repeatedly improve x:
 - Compute the value of f at the guess: $f(x)$
 - Compute the derivative of f at the guess: $f'(x)$
 - Update guess x to be: $x \leftarrow x - \frac{f(x)}{f'(x)}$
 - Length from 0:
 - $-f(x)$
 - Slope of tangent line:
 - $f'(x)$
 - Zero of tangent line:
 - $-\frac{f(x)}{f'(x)}$

- Repeat until $f(x) \approx 0$ (or close enough)

Using Newton's Method

How to find the square root of 2?

```python
>>> f = lambda x: x**2 - 2
>>> df = lambda x: 2*x
>>> find_zero(f, df)
1.4142135623730951
```

How to find the cube root of 729?

```python
>>> g = lambda x: x**3 - 729
>>> dg = lambda x: 3*x**2
>>> find_zero(g, dg)
9.0
```

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update: $x \leftarrow \frac{x + \frac{a}{x}}{2}$

Implementation questions:

- What guess should start the computation?
- How do we know when we are finished?

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update: $x \leftarrow \frac{2 \cdot x + \frac{a}{x}^{\frac{2}{3}}}{3}$

Implementation questions:

- What guess should start the computation?
- How do we know when we are finished?

Implementing Newton's Method

(Demo)