61A Lecture 8

Wednesday, September 17
Announcements
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
 • Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
• Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17
• Midterm 1 is on Monday 9/22 from 7pm to 9pm
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm–10pm on Wednesday 9/17
• Midterm 1 is on Monday 9/22 from 7pm to 9pm
 ▪ 2 review sessions on Saturday 9/20 3pm–4:30pm and 4:30pm–6pm in 1 Pimentel
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm–10pm on Wednesday 9/17
• Midterm 1 is on Monday 9/22 from 7pm to 9pm
 ▪ 2 review sessions on Saturday 9/20 3pm–4:30pm and 4:30pm–6pm in 1 Pimentel
 ▪ HKN review session moved to Sunday 9/21, time/location TBD
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm–10pm on Wednesday 9/17
• Midterm 1 is on Monday 9/22 from 7pm to 9pm
 ▪ 2 review sessions on Saturday 9/20 3pm–4:30pm and 4:30pm–6pm in 1 Pimentel
 ▪ HKN review session moved to Sunday 9/21, time/location TBD
 ▪ Includes topics up to and including this lecture
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
 • Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm–10pm on Wednesday 9/17
• Midterm 1 is on Monday 9/22 from 7pm to 9pm
 • 2 review sessions on Saturday 9/20 3pm–4:30pm and 4:30pm–6pm in 1 Pimentel
 • HKN review session moved to Sunday 9/21, time/location TBD
 • INCLUDES topics up to and including this lecture
 • Closed book/note exam, except for one page of hand-written notes and a study guide
Announcements

• Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
 ▪ Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm–10pm on Wednesday 9/17
• Midterm 1 is on Monday 9/22 from 7pm to 9pm
 ▪ 2 review sessions on Saturday 9/20 3pm–4:30pm and 4:30pm–6pm in 1 Pimentel
 ▪ HKN review session moved to Sunday 9/21, time/location TBD
 ▪ Includes topics up to and including this lecture
 ▪ Closed book/note exam, except for one page of hand-written notes and a study guide
 ▪ Cannot attend? Fill out the conflict form by Wednesday 9/17 @ 5pm!
Announcements

- Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
 - Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm–10pm on Wednesday 9/17
- Midterm 1 is on Monday 9/22 from 7pm to 9pm
 - 2 review sessions on Saturday 9/20 3pm–4:30pm and 4:30pm–6pm in 1 Pimentel
 - HKN review session moved to Sunday 9/21, time/location TBD
 - Includes topics up to and including this lecture
 - Closed book/note exam, except for one page of hand-written notes and a study guide
 - Cannot attend? Fill out the conflict form by Wednesday 9/17 @ 5pm!
- Optional Hog strategy contest ends Wednesday 10/1 @ 11:59pm
Hog Contest Rules
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person

• Your score is the number of entries
 against which you win more than 50% of the time
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person

• Your score is the number of entries
 against which you win more than 50%
 of the time

• All strategies must be deterministic,
 pure functions of the current player
 scores
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50% of the time
• All strategies must be deterministic, pure functions of the current player scores
• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person

• Your score is the number of entries against which you win more than 50% of the time

• All strategies must be deterministic, pure functions of the current player scores

• All winning entries will receive 2 points of extra credit

• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50% of the time
• All strategies must be deterministic, pure functions of the current player scores
• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners

YOUR NAME COULD BE HERE... FOREVER!
Order of Recursive Calls
The Cascade Function

(Demo)

Interactive Diagram
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n // 10)
    print(n)
cascade(123)
```

(Demo)

- Global frame
 - func cascade(n) [parent=Global]
 - cascade
 - f1: cascade [parent=Global]
 - n: 123
 - f2: cascade [parent=Global]
 - n: 12
 - Return value: None
 - f3: cascade [parent=Global]
 - n: 1
 - Return value: None

Interactive Diagram
The Cascade Function

```python
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
829 cascade(123)
```

Program output:

```
123
12
1
12
```
The Cascade Function

```python
1  def cascade(n):
2      if n < 10:
3          print(n)
4      else:
5          print(n)
6          cascade(n//10)
7          print(n)
8  cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

Each cascade frame is from a different call to `cascade`.

Interactive Diagram
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

Program output:
```
123
12
1
12
```

(Demo)

Interactive Diagram

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
The Cascade Function

```python
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8     cascade(123)
```

Program output:
```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

Def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)
cascade(123)

Program output:
123
12
1
12

(Demo)

Each cascade frame is from a different call to cascade.
Until the Return value appears, that call has not completed.
Any statement can appear before or after the recursive call.
The Cascade Function

```python
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7     print(n)
8
cascade(123)
```

Program output:
```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Interactive Diagram
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

(Demo)

- Each cascade frame is from a different call to `cascade`.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Program output:

```
123
12
1
12
```
The Cascade Function

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

Program output:
123
12
1
12
Two Definitions of Cascade

(Demo)
Two Definitions of Cascade

(Demo)

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)
Two Definitions of Cascade

(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
Two Definitions of Cascade

(Demo)

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

• If two implementations are equally clear, then shorter is usually better
• In this case, the longer implementation is more clear (at least to me)
• When learning to write recursive functions, put the base cases first
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure
Example: Inverse Cascade
Inverse Cascade

Write a function that prints an inverse cascade:
Inverse Cascade

Write a function that prints an inverse cascade:

1
12
123
1234
123
12
1
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
grow(n)
print(n)
shrink(n)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

grow = lambda n: f_then_g(grow, print, n // 10)
shrink = lambda n: f_then_g(print, shrink, n // 10)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)
```
Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[n: \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
 n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \\
 \text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
n & : \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[n: \ 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \]

\[\text{fib}(n): \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465 \]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[n: \ 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ \ldots, \ 35 \]

\[\text{fib}(n): \ 0, \ 1, \ 1, \ 2, \ 3, \ 5, \ 8, \ 13, \ 21, \ \ldots, \ 9,227,465 \]

```python
def fib(n):
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
n & : \ 0, 1, 2, 3, 4, 5, 6, \ 7, \ 8, \ \ldots, \ 35 \\
\text{fib}(n) & : \ 0, 1, 1, 2, 3, 5, 8, 13, 21, \ \ldots, \ 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

def fib(n):
 if n == 0:
 return 0

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{array}{rcl}
n: & 0, 1, 2, 3, 4, 5, 6, 7, 8, & \ldots, & 35 \\
n\text{fib}(n): & 0, 1, 1, 2, 3, 5, 8, 13, 21, & \ldots, & 9,227,465 \\
\end{array}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
fib(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

n: $0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35$

$\text{fib}(n)$: $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465$
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
n & : \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib}(n) & : \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465 \\
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

\[\text{fib}(5) \]
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
  fib(5)
     |
    fib(3)
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
       fib(5)
      /     \
    fib(3)   fib(4)
```

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
<table>
<thead>
<tr>
<th>fib(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(3)</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>fib(0)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>fib(2)</td>
</tr>
<tr>
<td>fib(1)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>fib(4)</td>
</tr>
</tbody>
</table>
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
Repetition in Tree-Recursive Computation
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

We can speed up this computation dramatically in a few weeks by remembering results.
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

count_partitions(6, 4)
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

$$\text{count_partitions}(6, 4)$$

2 + 4 = 6
1 + 1 + 4 = 6
3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6
1 + 1 + 2 + 2 = 6
1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\begin{align*}
\text{count_partitions}(6, 4) & \quad \begin{array}{c}
\text{count_partitions}(6, 4) \\
2 + 4 = 6 \\
1 + 1 + 4 = 6 \\
3 + 3 = 6 \\
1 + 2 + 3 = 6 \\
1 + 1 + 1 + 3 = 6 \\
2 + 2 + 2 = 6 \\
1 + 1 + 2 + 2 = 6 \\
1 + 1 + 1 + 1 + 2 = 6 \\
1 + 1 + 1 + 1 + 1 = 6 \\
\end{array}
\end{align*}
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

2 + 4 = 6
1 + 1 + 4 = 6
3 + 3 = 6
1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6
1 + 1 + 2 + 2 = 6
1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

count_partitions(6, 4)
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```python
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4)\)
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[\text{count_partitions}(6, 4) \]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

$\text{count_partitions}(6, 4)$

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - $\text{count_partitions}(2, 4)$
 - $\text{count_partitions}(6, 3)$
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \text{count_partitions}(2, 4)
 - \text{count_partitions}(6, 3)
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[\text{count_partitions}(6, 4) \]

- Recursive decomposition: finding simpler instances of the problem.

- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4

- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)

- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\[\text{count_partitions}(6, 4) \]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \texttt{count_partitions}(2, 4)
 - \texttt{count_partitions}(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

def count_partitions(n, m):
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    # recursive case
    # base cases
    if n == 0:
        return 1
    if n < 0 or m == 0:
        return 0
    # recursive calls
    # use at least one 4
    with_4 = count_partitions(n-4, m)
    # don't use any 4
    without_4 = count_partitions(n, m-4)
    # total partitions
    return with_4 + without_4
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if
    else:
        with_m = count_partitions(n-m, m)
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m == 1:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m == 1:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • \(\text{count_partitions}(2, 4) \)
 • \(\text{count_partitions}(6, 3) \)
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 0
    elif m == n:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

• Recursive decomposition: finding simpler instances of the problem.

• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4

• Solve two simpler problems:
 • $\text{count_partitions}(2, 4)$
 • $\text{count_partitions}(6, 3)$

• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)