Announcements

- Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
- Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17
- Midterm 1 is on Monday 9/22 from 7pm to 9pm
- 2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel
- HKN review session moved to Sunday 9/21, time/location TBD
- Includes topics up to and including this lecture
- Closed book/note exam, except for one page of hand-written notes and a study guide
- Cannot attend? Fill out the conflict form by Wednesday 9/17 @ 5pm!
- Optional Hog strategy contest ends Wednesday 10/1 @ 11:59pm

Hog Contest Rules

- Up to two people submit one entry;
- Max of one entry per person
- Your score is the number of entries against which you win more than 50% of the time
- All strategies must be deterministic, pure functions of the current player scores
- All winning entries will receive 2 points of extra credit
- The real prize: honor and glory

Order of Recursive Calls

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure

The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n // 10)
        cascade(n // 10)
        print(n)
```

```
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n // 10)
        print(n)
```

Interactive Diagram

Two Definitions of Cascade

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n // 10)
        cascade(n // 10)
        print(n)
```

```
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n // 10)
        print(n)
```

Example: Inverse Cascade

```
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```

```
def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)
```

```
grow = lambda n: f_then_g(grow, print, n // 10)
shrink = lambda n: f_then_g(print, shrink, n // 10)
```
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

\[
\begin{align*}
\text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \\
\text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots , 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465 \\
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of \text{fib} evolves into a tree structure.

Repetition in Tree-Recursive Computation

This process is highly repetitive; \text{fib} is called on the same argument multiple times.

We can speed up this computation dramatically in a few weeks by remembering results.

Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\begin{align*}
\text{count_partitions}(6, 4): & \quad 2 + 4 = 6 \\
& \quad 1 + 1 + 4 = 6 \\
& \quad 3 + 3 = 6 \\
& \quad 1 + 2 + 3 = 6 \\
& \quad 1 + 1 + 1 + 3 = 6 \\
& \quad 2 + 2 + 2 = 6 \\
& \quad 1 + 1 + 2 + 2 = 6 \\
& \quad 1 + 1 + 1 + 1 + 2 = 6 \\
& \quad 1 + 1 + 1 + 1 + 1 + 1 = 6
\end{align*}
\]

Example: Counting Partitions

Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \text{count_partitions}(2, 4)
 - \text{count_partitions}(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

Interactive Diagram