61A Lecture 10

Wednesday, September 24
Announcements
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm
 • Homework party on Monday evening, details TBD
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm

 ▪ Homework party on Monday evening, details TBD

• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm
 • Homework party on Monday evening, details TBD
• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm
• Composition scores for Project 1 will mostly be assigned this week
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm
 • Homework party on Monday evening, details TBD
• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm
• Composition scores for Project 1 will mostly be assigned this week
 • 3/3 is unusual on the first project
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm

 ▪ Homework party on Monday evening, details TBD

• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm

• Composition scores for Project 1 will mostly be assigned this week

 ▪ 3/3 is unusual on the first project

 ▪ You can gain back composition points you lost on Project 1 by revising it (in November)
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm
 ▪ Homework party on Monday evening, details TBD

• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm

• Composition scores for Project 1 will mostly be assigned this week
 ▪ 3/3 is unusual on the first project
 ▪ You can gain back composition points you lost on Project 1 by revising it (in November)

• Midterm 1 should be graded by Friday
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm
 ▪ Homework party on Monday evening, details TBD

• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm

• Composition scores for Project 1 will mostly be assigned this week
 ▪ 3/3 is unusual on the first project
 ▪ You can gain back composition points you lost on Project 1 by revising it (in November)

• Midterm 1 should be graded by Friday
 ▪ Solutions to Midterm 1 will be posted after lecture
Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm
 ▪ Homework party on Monday evening, details TBD

• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm

• Composition scores for Project 1 will mostly be assigned this week
 ▪ 3/3 is unusual on the first project
 ▪ You can gain back composition points you lost on Project 1 by revising it (in November)

• Midterm 1 should be graded by Friday
 ▪ Solutions to Midterm 1 will be posted after lecture

• Guerrilla section this Saturday 12–2 and 2:30–5 on recursion
Data
Data Types

Every value has a type

(demo)
Data Types

Every value has a type
(demo)

Properties of native data types:
Data Types

Every value has a type

demo

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
Data Types

Every value has a type

(demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.
Data Types

Every value has a type

(demo)

Properties of native data types:
1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric Types in Python:
Data Types

Every value has a type

demo

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric Types in Python:

```python
>>> type(2)
<class 'int'>
```
Data Types

Every value has a type

(demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric Types in Python:

```python
>>> type(2)
<class 'int'>
```

Represents integers exactly
Data Types

Every value has a type

(demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric Types in Python:

```python
>>> type(2)
<class 'int'> Represents integers exactly

>>> type(1.5)
<class 'float'>
```
Data Types

Every value has a type

demo

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric Types in Python:

```python
>>> type(2)
<class 'int'>  # Represents integers exactly

>>> type(1.5)
<class 'float'>  # Represents real numbers approximately
```
Data Types

Every value has a type

(demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric Types in Python:

```python
>>> type(2)
<class 'int'> Represents integers exactly

>>> type(1.5)
<class 'float'> Represents real numbers approximately

>>> type(1+1j)
<class 'complex'>
```
Objects

(Demo)
Objects

(Demo)

- Objects represent information.
Objects

(Demo)

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
Objects

(Demo)

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, & processes.
Objects represent information.
They consist of data and behavior, bundled together to create abstractions.
Objects can represent things, but also properties, interactions, & processes.
A type of object is called a class; classes are first-class values in Python.
Objects

(Demo)

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, & processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
Objects

(Demo)

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, & processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
 - A metaphor for organizing large programs
Objects

• Objects represent information.
• They consist of data and behavior, bundled together to create abstractions.
• Objects can represent things, but also properties, interactions, & processes.
• A type of object is called a class; classes are first-class values in Python.

Object-oriented programming:
• A metaphor for organizing large programs
• Special syntax that can improve the composition of programs
Objects

Objects represent information.

- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, & processes.
- A type of object is called a class; classes are first-class values in Python.

Object-oriented programming:

- A metaphor for organizing large programs
- Special syntax that can improve the composition of programs

- In Python, every value is an object.
Objects

• Objects represent information.
• They consist of data and behavior, bundled together to create abstractions.
• Objects can represent things, but also properties, interactions, & processes.
• A type of object is called a class; classes are first-class values in Python.
• Object-oriented programming:
 • A metaphor for organizing large programs
 • Special syntax that can improve the composition of programs
• In Python, every value is an object.
 • All objects have attributes.
Objects

• Objects represent information.
• They consist of data and behavior, bundled together to create abstractions.
• Objects can represent things, but also properties, interactions, & processes.
• A type of object is called a class; classes are first-class values in Python.

Object-oriented programming:
• A metaphor for organizing large programs
• Special syntax that can improve the composition of programs

In Python, every value is an object.
• All objects have attributes.
• A lot of data manipulation happens through object methods.
Objects

• Objects represent information.
• They consist of data and behavior, bundled together to create abstractions.
• Objects can represent things, but also properties, interactions, & processes.
• A type of object is called a class; classes are first-class values in Python.

Object-oriented programming:
• A metaphor for organizing large programs
• Special syntax that can improve the composition of programs

In Python, every value is an object.
• All objects have attributes.
• A lot of data manipulation happens through object methods.
• Functions do one thing; objects do many related things.
Data Abstraction
Data Abstraction
Data Abstraction

• Compound objects combine objects together
Data Abstraction

- Compound objects combine objects together
 - A date: a year, a month, and a day
Data Abstraction

• Compound objects combine objects together
 ▪ A date: a year, a month, and a day
 ▪ A geographic position: latitude and longitude
Data Abstraction

- Compound objects combine objects together
 - A date: a year, a month, and a day
 - A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
Data Abstraction

• Compound objects combine objects together
 ▪ A date: a year, a month, and a day
 ▪ A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound objects as units

• Isolate two parts of any program that uses data:
Data Abstraction

• Compound objects combine objects together
 ▪ A date: a year, a month, and a day
 ▪ A geographic position: latitude and longitude
• An abstract data type lets us manipulate compound objects as units
• Isolate two parts of any program that uses data:
 ▪ How data are represented (as parts)
Data Abstraction

• Compound objects combine objects together
 ▪ A date: a year, a month, and a day
 ▪ A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound objects as units

• Isolate two parts of any program that uses data:
 ▪ How data are represented (as parts)
 ▪ How data are manipulated (as units)
Data Abstraction

• Compound objects combine objects together
 ▪ A date: a year, a month, and a day
 ▪ A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound objects as units

• Isolate two parts of any program that uses data:
 ▪ How data are represented (as parts)
 ▪ How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use
Data Abstraction

• Compound objects combine objects together
 ▪ A date: a year, a month, and a day
 ▪ A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound objects as units

• Isolate two parts of any program that uses data:
 ▪ How data are represented (as parts)
 ▪ How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use
Data Abstraction

• Compound objects combine objects together
 ▪ A date: a year, a month, and a day
 ▪ A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound objects as units

• Isolate two parts of any program that uses data:
 ▪ How data are represented (as parts)
 ▪ How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use
Rational Numbers

\[
\frac{\text{numerator}}{\text{denominator}}
\]
Rational Numbers

\[
\frac{\text{numerator}}{\text{denominator}}
\]

Exact representation of fractions
Rational Numbers

\[\frac{\text{numerator}}{\text{denominator}} \]

Exact representation of fractions

A pair of integers
Rational Numbers

\[
\frac{\text{numerator}}{\text{denominator}}
\]

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!
Rational Numbers

\[
\frac{\text{numerator}}{\text{denominator}}
\]

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:
Rational Numbers

\[
\frac{\text{numerator}}{\text{denominator}}
\]

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

- rational(n, d) returns a rational number x
Rational Numbers

\[
\begin{array}{c}
\text{numerator} \\
\hline
\text{denominator}
\end{array}
\]

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

- rational\((n, d)\) returns a rational number \(x\)
- numer\((x)\) returns the numerator of \(x\)
Rational Numbers

A rational number can be represented as a pair of integers:

\[
\frac{\text{numerator}}{\text{denominator}}
\]

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

- \(\text{rational}(n, d)\) returns a rational number \(x\)
- \(\text{numer}(x)\) returns the numerator of \(x\)
- \(\text{denom}(x)\) returns the denominator of \(x\)
Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

- \(\text{rational}(n, d) \) returns a rational number \(x \)
 - \(\text{numer}(x) \) returns the numerator of \(x \)
 - \(\text{denom}(x) \) returns the denominator of \(x \)
Rational Numbers

Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

- `rational(n, d)` returns a rational number \(x \)
- `numer(x)` returns the numerator of \(x \)
- `denom(x)` returns the denominator of \(x \)
Rational Number Arithmetic

Example

General Form
Rational Number Arithmetic

Example

\[
\frac{3}{2} \times \frac{3}{5}
\]
Rational Number Arithmetic

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]
Rational Number Arithmetic

Example

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

General Form

\[
\frac{nx}{dx} \times \frac{ny}{dy}
\]
Rational Number Arithmetic

Example

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

General Form

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx\cdot ny}{dx\cdot dy}
\]
Rational Number Arithmetic

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

\[
\frac{3}{2} + \frac{3}{5}
\]

Example

General Form

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx \times ny}{dx \times dy}
\]
Rational Number Arithmetic

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

\[
\frac{3}{2} + \frac{3}{5} = \frac{21}{10}
\]

Example

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx \times ny}{dx \times dy}
\]
Rational Number Arithmetic

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

\[
\frac{3}{2} + \frac{3}{5} = \frac{21}{10}
\]

Example

General Form

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx \times ny}{dx \times dy}
\]

\[
\frac{nx}{dx} + \frac{ny}{dy} = \frac{nx}{dx} + \frac{ny}{dy}
\]
Rational Number Arithmetic

\[
\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}
\]

\[
\frac{3}{2} + \frac{3}{5} = \frac{21}{10}
\]

Example

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx \times ny}{dx \times dy}
\]

\[
\frac{nx}{dx} + \frac{ny}{dy} = \frac{nx \times dy + ny \times dx}{dx \times dy}
\]

General Form
Rational Number Arithmetic Implementation

- `rational(n, d)` returns a rational number `x`
- `numer(x)` returns the numerator of `x`
- `denom(x)` returns the denominator of `x`

\[
\frac{nx}{dx} \times \frac{ny}{dy} = \frac{nx \times ny}{dx \times dy}
\]

\[
\frac{nx}{dx} + \frac{ny}{dy} = \frac{nx \times dy + ny \times dx}{dx \times dy}
\]
Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y),
                    denom(x) * denom(y))
```

- `rational(n, d)` returns a rational number \(x \)
- `numer(x)` returns the numerator of \(x \)
- `denom(x)` returns the denominator of \(x \)
Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y),
                    denom(x) * denom(y))
```

- `rational(n, d)` returns a rational number \(x \)
- `numer(x)` returns the numerator of \(x \)
- `denom(x)` returns the denominator of \(x \)
Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y), denom(x) * denom(y))
```

- `rational(n, d)` returns a rational number `x`
- `numer(x)` returns the numerator of `x`
- `denom(x)` returns the denominator of `x`
Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y),
                    denom(x) * denom(y))
```

- `rational(n, d)` returns a rational number `x`
- `numer(x)` returns the numerator of `x`
- `denom(x)` returns the denominator of `x`

These functions implement an abstract data type for rational numbers.
Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y), denom(x) * denom(y))

def add_rational(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return rational(nx * dy + ny * dx, dx * dy)
```

- `rational(n, d)` returns a rational number \(x \)
- `numer(x)` returns the numerator of \(x \)
- `denom(x)` returns the denominator of \(x \)

These functions implement an abstract data type for rational numbers.
Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y),
                    denom(x) * denom(y))

def add_rational(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return rational(nx * dy + ny * dx, dx * dy)

def print_rational(x):
    print(numer(x), '/', denom(x))
```

- `rational(n, d)` returns a rational number x
- `numer(x)` returns the numerator of x
- `denom(x)` returns the denominator of x

These functions implement an abstract data type for rational numbers.
Rational Number Arithmetic Implementation

```python
def mul_rational(x, y):
    return rational(numer(x) * numer(y), denom(x) * denom(y))

def add_rational(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return rational(nx * dy + ny * dx, dx * dy)

def print_rational(x):
    print(numer(x), '/', denom(x))

def rations_are_equal(x, y):
    return numer(x) * denom(y) == numer(y) * denom(x)
```

- `rational(n, d)` returns a rational number x
- `numer(x)` returns the numerator of x
- `denom(x)` returns the denominator of x

These functions implement an abstract data type for rational numbers.
Pairs
Representing Pairs Using Lists
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
```
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]
```
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]
```

A list literal:
Comma-separated expressions in brackets
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]

>>> x, y = pair
```
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]

>>> x, y = pair
>>> x
1
```

A list literal:
Comma-separated expressions in brackets
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2
```

A list literal:
Comma-separated expressions in brackets
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2
```

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
```

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
```

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list
Representing Pairs Using Lists

>>> pair = [1, 2]
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list

Element selection using the selection operator
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2

>>> from operator importgetitem
```
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2

>>> from operator import getitem
>>> getitem(pair, 0)
1
```

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list

Element selection using the selection operator
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
>>> pair
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2

>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2
```

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list

Element selection using the selection operator
Representing Pairs Using Lists

```python
>>> pair = [1, 2]
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2

>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2
```

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list

Element selection using the selection operator

Element selection function
Representing Pairs Using Lists

>>> pair = [1, 2]
[1, 2]

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2

>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list

Element selection using the selection operator

Element selection function

More lists next lecture
def rational(n, d):
 """Construct a rational number that represents N/D."""
 return [n, d]
Representing Rational Numbers

def rational(n, d):
 """Construct a rational number that represents N/D."""
 return [n, d]
Representing Rational Numbers

def rational(n, d):
 """Construct a rational number that represents N/D."""
 return [n, d]

def numer(x):
 """Return the numerator of rational number X."""
 return x[0]
Representing Rational Numbers

```python
def rational(n, d):
    """Construct a rational number that represents N/D."""
    return [n, d]

def numer(x):
    """Return the numerator of rational number X."""
    return x[0]

def denom(x):
    """Return the denominator of rational number X."""
    return x[1]
```
Representing Rational Numbers

```python
def rational(n, d):
    """Construct a rational number that represents N/D."""
    return [n, d]

def numer(x):
    """Return the numerator of rational number X."""
    return x[0]

def denom(x):
    """Return the denominator of rational number X."""
    return x[1]
```

Construct a list

Select item from a list
Reducing to Lowest Terms

Example:
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3}
\]
Reducing to Lowest Terms

Example:

\[
\begin{array}{c}
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2}
\end{array}
\]
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2}
\]

\[
\frac{15}{6} \times \frac{1/3}{1/3} = \frac{5}{2}
\]
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2} \quad \frac{2}{5} + \frac{1}{10}
\]

\[
\frac{15}{6} \times \frac{1/3}{1/3} = \frac{5}{2}
\]
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2} + \frac{2}{5} + \frac{1}{10} = \frac{1}{2}
\]

\[
\frac{15}{6} \times \frac{1/3}{1/3} = \frac{5}{2}
\]
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2} \quad \frac{2}{5} + \frac{1}{10} = \frac{1}{2}
\]

\[
\frac{15}{6} \times \frac{1}{3} = \frac{5}{2} \quad \frac{25}{50} \times \frac{1}{25} = \frac{1}{2}
\]
Reducing to Lowest Terms

Example:

\[
\begin{align*}
\frac{3}{2} \times \frac{5}{3} &= \frac{5}{2} \\
\frac{2}{5} + \frac{1}{10} &= \frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
\frac{15}{6} \times \frac{1/3}{1/3} &= \frac{5}{2} \\
\frac{25}{50} \times \frac{1/25}{1/25} &= \frac{1}{2}
\end{align*}
\]

from fractions import gcd
Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2} \quad \quad \quad \frac{2}{5} + \frac{1}{10} = \frac{1}{2}
\]

\[
\frac{15}{6} \times \frac{1/3}{1/3} = \frac{5}{2} \quad \quad \quad \frac{25}{50} \times \frac{1/25}{1/25} = \frac{1}{2}
\]

from fractions import gcd

def rational(n, d):
Reducing to Lowest Terms

Example:

\[
\begin{align*}
\frac{3}{2} \times \frac{5}{3} &= \frac{5}{2} \\
\frac{2}{5} + \frac{1}{10} &= \frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
\frac{15}{6} \times \frac{1}{3} &= \frac{5}{2} \\
\frac{25}{50} \times \frac{1}{25} &= \frac{1}{2}
\end{align*}
\]

from fractions import gcd

def rational(n, d):
 """Construct a rational number x that represents n/d."""

Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{5}{2}
\]

\[
\frac{2}{5} + \frac{1}{10} = \frac{1}{2}
\]

\[
\frac{15}{6} \times \frac{1/3}{1/3} = \frac{5}{2}
\]

\[
\frac{25}{50} \times \frac{1/25}{1/25} = \frac{1}{2}
\]

```python
from fractions import gcd

def rational(n, d):
    """Construct a rational number x that represents n/d."""
    g = gcd(n, d)
```
Reducing to Lowest Terms

Example:

\[
\begin{align*}
\frac{3}{2} \times \frac{5}{3} &= \frac{5}{2} \\
\frac{2}{5} + \frac{1}{10} &= \frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
\frac{15}{6} \times \frac{1}{3} &= \frac{5}{2} \\
\frac{25}{50} \times \frac{1}{25} &= \frac{1}{2}
\end{align*}
\]

```python
from fractions import gcd

def rational(n, d):
    """Construct a rational number x that represents n/d."""
    g = gcd(n, d)
    return [n//g, d//g]
```
from fractions import gcd

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 g = gcd(n, d)
 return [n//g, d//g]

Reducing to Lowest Terms

Example:

\[
\frac{3}{2} \times \frac{5}{3} = \frac{\frac{5}{2}}{\frac{2}{5}}
\]

\[
\frac{2}{5} + \frac{1}{10} = \frac{\frac{1}{2}}{\frac{50}{1}} = \frac{\frac{1}{2}}{\frac{1}{25}}
\]
Abstraction Barriers
Abstraction Barriers
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers</td>
<td>to perform computation</td>
<td></td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td></td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers</td>
<td>whole data values</td>
<td>add_rational, mul_rational</td>
</tr>
<tr>
<td>to perform computation</td>
<td></td>
<td>rationals_are_equal, print_rational</td>
</tr>
</tbody>
</table>

Create rationals or implement rational operations
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rationals_are_equal, print_rational</td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>to perform computation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
<tr>
<td>Implement selectors and constructor for rationals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational rations_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
<tr>
<td>Implement selectors and constructor for rationals</td>
<td>two-element lists</td>
<td></td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
<tr>
<td>Implement selectors and constructor for rationals</td>
<td>two-element lists</td>
<td>list literals and element selection</td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
<tr>
<td>Implement selectors and constructor for rationals</td>
<td>two-element lists</td>
<td>list literals and element selection</td>
</tr>
</tbody>
</table>
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
<tr>
<td>Implement selectors and constructor for rationals</td>
<td>two-element lists</td>
<td>list literals and element selection</td>
</tr>
</tbody>
</table>

Implementation of lists
Abstraction Barriers

<table>
<thead>
<tr>
<th>Parts of the program that...</th>
<th>Treat rationals as...</th>
<th>Using...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use rational numbers to perform computation</td>
<td>whole data values</td>
<td>add_rational, mul_rational, rationals_are_equal, print_rational</td>
</tr>
<tr>
<td>Create rationals or implement rational operations</td>
<td>numerators and denominators</td>
<td>rational, numer, denom</td>
</tr>
<tr>
<td>Implement selectors and constructor for rationals</td>
<td>two-element lists</td>
<td>list literals and element selection</td>
</tr>
</tbody>
</table>

Implementation of lists
Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):
 return [x[0] * y[1], x[1] * y[0]]
Violating Abstraction Barriers

Does not use constructors

```
add_rational( [1, 2], [1, 4] )
```

```
def divide_rational(x, y):
    return [ x[0] * y[1], x[1] * y[0] ]
```
Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):
 return [x[0] * y[1], x[1] * y[0]]
Violating Abstraction Barriers

add_rational([1, 2], [1, 4])

def divide_rational(x, y):
 return [x[0] * y[1], x[1] * y[0]]
Does not use constructors

Twice!

add_rational([1, 2], [1, 4])

def divide_rational(x, y):
 return [x[0] * y[1], x[1] * y[0]]

No selectors!

And no constructor!
Violating Abstraction Barriers
Data Representations
What is Data?
What is Data?

• We need to guarantee that constructor and selector functions work together to specify the right behavior.
What is Data?

- We need to guarantee that constructor and selector functions work together to specify the right behavior.

- Behavior condition: If we construct rational number x from numerator n and denominator d, then numer(x)/denom(x) must equal n/d.
What is Data?

• We need to guarantee that constructor and selector functions work together to specify the right behavior.

• Behavior condition: If we construct rational number x from numerator n and denominator d, then numer(x)/denom(x) must equal n/d.

• An abstract data type is some collection of selectors and constructors, together with some behavior condition(s).
What is Data?

• We need to guarantee that constructor and selector functions work together to specify the right behavior.

• Behavior condition: If we construct rational number x from numerator n and denominator d, then $\text{numer}(x)/\text{denom}(x)$ must equal n/d.

• An abstract data type is some collection of selectors and constructors, together with some behavior condition(s).

• If behavior conditions are met, then the representation is valid.
What is Data?

- We need to guarantee that constructor and selector functions work together to specify the right behavior.

- Behavior condition: If we construct rational number \(x \) from numerator \(n \) and denominator \(d \), then \(\text{numerator}(x)/\text{denominator}(x) \) must equal \(n/d \).

- An abstract data type is some collection of selectors and constructors, together with some behavior condition(s).

- If behavior conditions are met, then the representation is valid.

You can recognize abstract data types by their behavior, not by their class.
Behavior Conditions of a Pair
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list.
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list.

But is that the only way to make pairs of values? No!
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p \) was constructed from elements \(x \) and \(y \), then

- \(\text{select}(p, 0) \) returns \(x \), and
- \(\text{select}(p, 1) \) returns \(y \).
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list. But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

- $\text{select}(p, 0)$ returns x, and
- $\text{select}(p, 1)$ returns y.

Together, selectors are the inverse of the constructor
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p \) was constructed from elements \(x \) and \(y \), then

- \(\text{select}(p, 0) \) returns \(x \), and
- \(\text{select}(p, 1) \) returns \(y \).

Together, selectors are the inverse of the constructor.

Generally true of container types.
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list. But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p \) was constructed from elements \(x \) and \(y \), then

- \(\text{select}(p, 0) \) returns \(x \), and
- \(\text{select}(p, 1) \) returns \(y \).

Together, selectors are the inverse of the constructor.

Generally true of container types.

Not true for rational numbers because of GCD.
Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list. But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

- $\text{select}(p, 0)$ returns x, and
- $\text{select}(p, 1)$ returns y.

Together, selectors are the inverse of the constructor.

Generally true of container types.

(Demo)
Functional Pair Implementation

Interactive Diagram
def pair(x, y):
 """Return a function that represents a pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get
def pair(x, y):
 """Return a function that represents a pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

Interactive Diagram
def pair(x, y):
 """Return a function that represents a pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

This function represents a pair

Constructor is a higher-order function
def pair(x, y):
 """Return a function that represents a pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

def select(p, i):
 """Return the element at index i of pair p."""
 return p(i)
def pair(x, y):
 """Return a function that represents a pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

def select(p, i):
 """Return the element at index i of pair p."""
 return p(i)

Functional Pair Implementation

This function represents a pair

Constructor is a higher-order function

Selector defers to the object itself
def pair(x, y):
 """Return a function that represents a pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

def select(p, i):
 """Return the element at index i of pair p."""
 return p(i)

point = pair(2, 4)
select(point, 1)
Functional Pair Implementation

```python
def pair(x, y):
    """Return a function that represents a pair."""
    def get(index):
        if index == 0:
            return x
        elif index == 1:
            return y
    return get

def select(p, i):
    """Return the element at index i of pair p."""
    return p(i)
```

This function represents a pair

Constructor is a higher-order function

Selector defers to the object itself

Interactive Diagram
Using a Functionally Implemented Pair
Using a Functionally Implemented Pair

```python
>>> p = pair(1, 2)

>>> select(p, 0)
1

>>> select(p, 1)
2
```
Using a Functionally Implemented Pair

```python
>>> p = pair(1, 2)

>>> select(p, 0)
1

>>> select(p, 1)
2
```

As long as we do not violate the abstraction barrier, we don't need to know that pairs are just functions.
Using a Functionally Implemented Pair

```python
>>> p = pair(1, 2)
```

```python
>>> select(p, 0)
1
```

```python
>>> select(p, 1)
2
```

As long as we do not violate the abstraction barrier, we don't need to know that pairs are just functions.

If a pair `p` was constructed from elements `x` and `y`, then

- `select(p, 0)` returns `x`, and
- `select(p, 1)` returns `y`.

Using a Functionally Implemented Pair

```python
>>> p = pair(1, 2)
>>> select(p, 0)
1
>>> select(p, 1)
2
```

If a pair p was constructed from elements x and y, then

- `select(p, 0)` returns x, and
- `select(p, 1)` returns y.

This pair representation is valid!

As long as we do not violate the abstraction barrier, we don't need to know that pairs are just functions.