Announcements
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
Announcements

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
• Homework 10 due Wednesday 12/3 @ 11:59pm
 • Homework Party Monday 6pm–8pm in 2050 VLSB
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
• Homework 10 due Wednesday 12/3 @ 11:59pm
 • Homework Party Monday 6pm–8pm in 2050 VLSB
 • Ask homework questions in lab; both lab and homework are about SQL
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm–8pm in 2050 VLSB
 - Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
• Homework 10 due Wednesday 12/3 @ 11:59pm
 ▪ Homework Party Monday 6pm–8pm in 2050 VLSB
 ▪ Ask homework questions in lab; both lab and homework are about SQL
• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
• No videos for Lecture 38 on Friday 12/5
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
• Homework 10 due Wednesday 12/3 @ 11:59pm
 ▪ Homework Party Monday 6pm–8pm in 2050 VLSB
 ▪ Ask homework questions in lab; both lab and homework are about SQL
• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
• No videos for Lecture 38 on Friday 12/5
 ▪ Come to class and take the final survey
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
• Homework 10 due Wednesday 12/3 @ 11:59pm
 ▪ Homework Party Monday 6pm–8pm in 2050 VLSB
 ▪ Ask homework questions in lab; both lab and homework are about SQL
• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
• No videos for Lecture 38 on Friday 12/5
 ▪ Come to class and take the final survey
 ▪ There will be a screencast of live lecture (as always)
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
• Homework 10 due Wednesday 12/3 @ 11:59pm
 ▪ Homework Party Monday 6pm–8pm in 2050 VLSB
 ▪ Ask homework questions in lab; both lab and homework are about SQL
• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
• No videos for Lecture 38 on Friday 12/5
 ▪ Come to class and take the final survey
 ▪ There will be a screencast of live lecture (as always)
• Screencasts: http://goo.gl/hyUTca
Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm
 • Homework Party Monday 6pm–8pm in 2050 VLSB
 • Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

• No videos for Lecture 38 on Friday 12/5
 • Come to class and take the final survey
 • There will be a screencast of live lecture (as always)
 • Screencasts: http://goo.gl/hyUTca

• Final exam held on Thursday 12/18 3pm–6pm (review info later this week)
Unix
Computer Systems
Computer Systems

Systems research enables the development of applications by defining and implementing abstractions:
Computer Systems

Systems research enables the development of applications by defining and implementing abstractions:

• **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware
Computer Systems

Systems research enables the development of applications by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware

- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure
Computer Systems

Systems research enables the development of applications by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware

- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure

- **Databases** provide a declarative interface to software that stores and retrieves information efficiently
Computer Systems

Systems research enables the development of applications by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware

- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure

- **Databases** provide a declarative interface to software that stores and retrieves information efficiently

- **Distributed systems** provide a unified interface to a cluster of multiple machines
Computer Systems

Systems research enables the development of applications by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware
- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure
- **Databases** provide a declarative interface to software that stores and retrieves information efficiently
- **Distributed systems** provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:
Computer Systems

Systems research enables the development of applications by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware

- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure

- **Databases** provide a declarative interface to software that stores and retrieves information efficiently

- **Distributed systems** provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:

> Hide complexity, but retain flexibility
The Unix Operating System
The Unix Operating System

Essential features of the Unix operating system (and variants):
The Unix Operating System

Essential features of the Unix operating system (and variants):
- **Portability**: The same operating system on different hardware.
The Unix Operating System

Essential features of the Unix operating system (and variants):

• **Portability**: The same operating system on different hardware.
• **Multi-Tasking**: Many processes run concurrently on a machine.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

```
standard input ➔ process
```
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
The Unix Operating System

Essential features of the Unix operating system (and variants):

• **Portability**: The same operating system on different hardware.
• **Multi-Tasking**: Many processes run concurrently on a machine.
• **Plain Text**: Data is stored and shared in text format.
• **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix–like operating system are similar to Python iterators.
The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware.
- **Multi-Tasking**: Many processes run concurrently on a machine.
- **Plain Text**: Data is stored and shared in text format.
- **Modularity**: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix–like operating system are similar to Python iterators.

(Demo)

```
ls hw* | grep -v html | cut -f 1 -d '.' | cut -c 3- | sort -n
```
Python Programs in a Unix Environment

The built-in `input` function reads a line from standard input.
Python Programs in a Unix Environment

The built-in `input` function reads a line from standard input.

The built-in `print` function writes a line to standard output.
Python Programs in a Unix Environment

The built-in `input` function reads a line from standard input.

The built-in `print` function writes a line to standard output.

(Demo)
Python Programs in a Unix Environment

The built-in `input` function reads a line from standard input.

The built-in `print` function writes a line to standard output.

(Demo)

The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files.
Python Programs in a Unix Environment

The built-in \texttt{input} function reads a line from standard input.

The built-in \texttt{print} function writes a line to standard output.

(Demo)

The \texttt{sys.stdin} and \texttt{sys.stdout} values provide access to the Unix standard streams as files.

A Python file has an interface that supports iteration, \texttt{read}, and \texttt{write} methods.
Python Programs in a Unix Environment

The built-in `input` function reads a line from standard input

The built-in `print` function writes a line to standard output

(Demo)

The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, `read`, and `write` methods

Using these "files" takes advantage of the operating system text processing abstraction
Python Programs in a Unix Environment

The built-in `input` function reads a line from standard input

The built-in `print` function writes a line to standard output

(Demo)

The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, `read`, and `write` methods

Using these "files" takes advantage of the operating system text processing abstraction

(Demo)
MapReduce
Big Data Processing
Big Data Processing

MapReduce is a framework for batch processing of big data.
Big Data Processing

MapReduce is a framework for batch processing of big data.

- **Framework**: A system used by programmers to build applications
MapReduce is a framework for batch processing of big data.

- **Framework**: A system used by programmers to build applications
- **Batch processing**: All the data is available at the outset, and results aren't used until processing completes
Big Data Processing

MapReduce is a framework for batch processing of big data.

- **Framework**: A system used by programmers to build applications
- **Batch processing**: All the data is available at the outset, and results aren't used until processing completes
- **Big data**: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis
Big Data Processing

MapReduce is a framework for batch processing of big data.

• **Framework**: A system used by programmers to build applications

• **Batch processing**: All the data is available at the outset, and results aren't used until processing completes

• **Big data**: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:
Big Data Processing

MapReduce is a framework for batch processing of big data.

- **Framework**: A system used by programmers to build applications
- **Batch processing**: All the data is available at the outset, and results aren't used until processing completes
- **Big data**: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

- Data sets are too big to be analyzed by one machine
Big Data Processing

MapReduce is a framework for batch processing of big data.

- **Framework**: A system used by programmers to build applications
- **Batch processing**: All the data is available at the outset, and results aren't used until processing completes
- **Big data**: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

- Data sets are too big to be analyzed by one machine
- Using multiple machines has the same complications, regardless of the application/analysis
Big Data Processing

MapReduce is a framework for batch processing of big data.

- **Framework**: A system used by programmers to build applications
- **Batch processing**: All the data is available at the outset, and results aren't used until processing completes
- **Big data**: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

- Data sets are too big to be analyzed by one machine
- Using multiple machines has the same complications, regardless of the application/analysis
- Pure functions enable an abstraction barrier between data processing logic and coordinating a distributed application
Big Data Processing

MapReduce is a framework for batch processing of big data.

Framework: A system used by programmers to build applications

Batch processing: All the data is available at the outset, and results aren't used until processing completes

Big data: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

- Data sets are too big to be analyzed by one machine
- Using multiple machines has the same complications, regardless of the application/analysis
- Pure functions enable an abstraction barrier between data processing logic and coordinating a distributed application

(Demo)
MapReduce Evaluation Model
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

The mapper takes an iterable value containing inputs, such as lines of text
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key–value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key–value pairs for each input
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key–value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key–value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs
- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

```
 mapper
```

```
 o: 2
 a: 1
 u: 1
 e: 3
```
MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

```
mapper
```

```
o: 2
a: 1
u: 1
e: 3
```
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs
- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

mapper

<table>
<thead>
<tr>
<th>o</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>o</td>
<td>1</td>
</tr>
</tbody>
</table>
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key–value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key–value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

mapper

```
| o  | 2 |
| a  | 1 |
| u  | 1 |
| e  | 3 |
| i  | 1 |
```

```
| a  | 4 |
| o  | 2 |
| e  | 1 |
| i  | 1 |
| a  | 1 |
| o  | 1 |
| e  | 1 |
| i  | 1 |
```
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key–value pairs
- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key–value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs
- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key–value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key–value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key–value pairs
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
MapReduce Evaluation Model

Map phase: Apply a *mapper* function to all inputs, emitting intermediate key–value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key–value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key–value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key

```
a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...
```
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a \textit{reducer} function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key–value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Execution Model
Execution Model

Parallel Execution Implementation

Map Task 1

Map Task 2

Map Task 3

Sort and Group

Reduce Task 1

Reduce Task 2

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html
A "task" is a Unix process running on a machine.
A "task" is a Unix process running on a machine.
MapReduce Assumptions
MapReduce Assumptions

Constraints on the mapper and reducer:
MapReduce Assumptions

Constraints on the *mapper* and *reducer*:

- The mapper must be equivalent to applying a deterministic pure function to each input independently.
MapReduce Assumptions

Constraints on the mapper and reducer:

- The mapper must be equivalent to applying a deterministic pure function to each input independently.
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key.
MapReduce Assumptions

Constraints on the *mapper* and *reducer*:

• The mapper must be equivalent to applying a deterministic pure function to each input independently

• The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:
MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a deterministic pure function to each input independently
• The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:
• When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
MapReduce Assumptions

Constraints on the mapper and reducer:
- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:
- When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
- Referential transparency: a call expression can be replaced by its value (or vis versa) without changing the program
MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function to each input independently
• The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
• Referential transparency: a call expression can be replaced by its value (or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:
MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function to each input independently
• The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
• Referential transparency: a call expression can be replaced by its value (or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned
MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a deterministic pure function to each input independently
• The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:
• When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
• Referential transparency: a call expression can be replaced by its value (or vice versa) without changing the program

In MapReduce, these functional programming ideas allow:
• Consistent results, however computation is partitioned
• Re-computation and caching of results, as needed
MapReduce Applications
Python Example of a MapReduce Application
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs:

- They read from standard input and write to standard output.
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs:
- They read from standard input and write to standard output

Mapper
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

Mapper

```python
def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```
Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs:

- They read from standard input and write to standard output

```python
#!/usr/bin/env python3

import sys
from mr import emit

def emit_vowels(line):
    vowel = 'aeiou'
    count = line.count(vowel)
    if count > 0:
        emit(vowel, count)
```

Mapper

```python
#!/usr/bin/env python3

import sys
from mr import emit

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```
Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.
• They read from standard input and write to standard output

Mapper

```python
#!/usr/bin/env python3
import sys
from mr import emit

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```

Tell Unix: This is Python 3 code
Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

- They read from standard input and write to standard output

Mapper

```python
#!/usr/bin/env python3
import sys
from mr import emit

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```

Tell Unix: This is Python 3 code

The emit function outputs a key and value as a line of text to standard output.
Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs:

- They read from standard input and write to standard output

Mapper

```
#!/usr/bin/env python3

import sys
from mr import emit

for line in sys.stdin:
    emit_vowels(line)

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```

Tell Unix: This is Python 3 code

The emit function outputs a key and value as a line of text to standard output:

```
for line in sys.stdin:
    emit_vowels(line)
```
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

- They read from standard input and write to standard output

Mapper

```
#!/usr/bin/env python3
import sys
from mr import emit

for line in sys.stdin:
    emit_vowels(line)
```

Mapper inputs are lines of text provided to standard input

Tell Unix: This is Python 3 code

```
def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```

The emit function outputs a key and value as a line of text to standard output
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs
- They read from standard input and write to standard output

Mapper

```python
#!/usr/bin/env python3

import sys
from mr import emit

for line in sys.stdin:
    emit_vowels(line)

def emit_vowels(line):
    for vowel in 'aeiou:
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)

for line in sys.stdin:
    emit_vowels(line)
```

Tell Unix: This is Python 3 code

The emit function outputs a key and value as a line of text to standard output

Mapper inputs are lines of text provided to standard input
The **mapper** and **reducer** are both self-contained Python programs
- They read from standard input and write to standard output

Mapper

```python
#!/usr/bin/env python3

import sys
from mr import emit

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)

for line in sys.stdin:
    emit_vowels(line)
```

Tell Unix: This is Python 3 code

The emit function outputs a key and value as a line of text to standard output

Mapper inputs are lines of text provided to standard input

(Demo)
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

* They read from standard input and write to standard output

Reducer
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

- They read from standard input and write to standard output

Reducer

```python
#!/usr/bin/env python3

ingroup sys
from mr import emit, values_by_key
```
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs
- They read from standard input and write to standard output

Reducer

```python
#!/usr/bin/env python3
import sys
from mr import emit, values_by_key
```
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

- They read from standard input and write to standard output

Reducer

```python
#!/usr/bin/env python3
import sys
from mr import emit, values_by_key

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all values for each key
```
The mapper and reducer are both self-contained Python programs.

They read from standard input and write to standard output.

```python
#!/usr/bin/env python3
import sys
from mr import emit, values_by_key

Reducer

for key, value_iterator in values_by_key(sys.stdin):
    emit(key, sum(value_iterator))
```

Input: lines of text representing key-value pairs, grouped by key

Output: Iterator over (key, value_iterator) pairs that give all values for each key

Takes and returns iterators
Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

- They read from standard input and write to standard output.

Reducer

```
#!/usr/bin/env python3

import sys
from mr import emit, values_by_key

for key, value_iterator in values_by_key(sys.stdin):
    emit(key, sum(value_iterator))
```

Input: lines of text representing key-value pairs, grouped by key.

Output: Iterator over (key, value_iterator) pairs that give all values for each key.

(Try running this code and see it in action.)
MapReduce Benefits
What Does the MapReduce Framework Provide
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
- The MapReduce framework automatically re-runs failed tasks
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
- The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

- The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

- The framework can run multiple copies of a task and keep the result of the one that finishes first
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
- The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded
- The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
- The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded
- The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive
- The framework tries to schedule map tasks on the machines that hold the data to be processed
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
- The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded
- The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive
- The framework tries to schedule map tasks on the machines that hold the data to be processed

Monitoring: Will my job finish before dinner?!?
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
- The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded
- The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive
- The framework tries to schedule map tasks on the machines that hold the data to be processed

Monitoring: Will my job finish before dinner?!?
- The framework provides a web-based interface describing jobs
What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash
• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded
• The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive
• The framework tries to schedule map tasks on the machines that hold the data to be processed

Monitoring: Will my job finish before dinner?!?
• The framework provides a web-based interface describing jobs

(Demo)