61A Lecture 32
Announcements
Local Tables
Local Tables

A `create table` statement names a table globally
Local Tables

A `create table` statement names a table globally

```sql
create table parents as
  select "abraham" as parent, "barack" as child union
select "abraham", "clinton" union
select "delano", "herbert" union
select "fillmore", "abraham" union
select "fillmore", "delano" union
select "fillmore", "grover" union
select "eisenhower", "fillmore";
```
Local Tables

A `create table` statement names a table globally

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
    select "abraham" , "clinton" union
    select "delano" , "herbert" union
    select "fillmore" , "abraham" union
    select "fillmore" , "delano" union
    select "fillmore" , "grover" union
    select "eisenhower" , "fillmore";
```

<table>
<thead>
<tr>
<th>Parent</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
</tr>
<tr>
<td>abraham</td>
<td>clinton</td>
</tr>
<tr>
<td>delano</td>
<td>herbert</td>
</tr>
<tr>
<td>fillmore</td>
<td>abraham</td>
</tr>
<tr>
<td>fillmore</td>
<td>delano</td>
</tr>
<tr>
<td>fillmore</td>
<td>grover</td>
</tr>
<tr>
<td>eisenhower</td>
<td>fillmore</td>
</tr>
</tbody>
</table>
Local Tables

A create table statement names a table globally

create table parents as
select "abraham" as parent, "barack" as child union
...
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child
union
 ...

parents:
 Eisenhower
 Fillmore
 Abraham
 Delano
 Grover
 Barack
 Clinton
 Herbert
Local Tables

A create table statement names a table globally.

A with clause of a select statement names a table that is local to the statement.

create table parents as
 select "abraham" as parent, "barack" as child union
...

parents:

Eisenhower
 ↓
 Fillmore
 ↓
 Abraham
 ↓
 Barack
 ↓
 Clinton
 ↓
 Herbert
 ↓
 Delano
 ↓
 Grover
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```sql
create table parents as
    select "abraham" as parent, "barack" as child union ...
```

```
select parent from ...
```
A create table statement names a table globally.

A with clause of a select statement names a table that is local to the statement.

create table parents as
 select "abraham" as parent, "barack" as child union
... with

select parent from ...

parents:
 Eisenhower
 Fillmore
 Abraham
 Delano
 Grover
 Barack
 Clinton
 Herbert
Local Tables

A create table statement names a table globally

A with clause of a select statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
 ...

with
 best(dog) as (

 select parent from ...
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
    ...
with
    best(dog) as ( select "eisenhower" union

select parent from ...
```
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```sql
create table parents as
select "abraham" as parent, "barack" as child
union

with best(dog) as (
    select "eisenhower" union
    select "barack"

select parent from ...
```
Local Tables

A create table statement names a table globally

A with clause of a select statement names a table that is local to the statement

cREATE TABLE parents AS
 SELECT "abraham" as parent, "barack" as child UNION
 ...

WITH best(dog) AS (
 SELECT "eisenhower" UNION
 SELECT "barack"
)
SELECT parent FROM ...
Local Tables

A create table statement names a table globally

A with clause of a select statement names a table that is local to the statement

create table parents as
 select "abraham" as parent, "barack" as child union
...
with
 best(dog) as (
 select "eisenhower" union
 select "barack"
)
select parent from ...
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

```sql
create table parents as
    select "abraham" as parent, "barack" as child union
...
with
    best(dog) as (  
        select "eisenhower" union
        select "barack"
    )
select parent from parents, best where child=dog;
```
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```sql
create table parents as
    select "abraham" as parent, "barack" as child union ...

with
    best(dog) as (  
        select "eisenhower" union  
        select "barack"
    )

select parent from parents, best where child=dog;
```

<table>
<thead>
<tr>
<th>best</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
</tr>
<tr>
<td>eisenhower</td>
</tr>
<tr>
<td>barack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
</tr>
</tbody>
</table>
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```
create table parents as
    select "abraham" as parent, "barack" as child union
    ...
with
    best(dog) as (%
        select "eisenhower" union
        select "barack"
    )%
select parent from parents, best where child=dog;
```

```
<table>
<thead>
<tr>
<th>dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>eisenhower</td>
</tr>
<tr>
<td>barack</td>
</tr>
</tbody>
</table>
```

Local table only exists for this select.
Local Tables

A `create table` statement names a table globally

A `with` clause of a `select` statement names a table that is local to the statement

```
create table parents as
    select "abraham" as parent, "barack" as child union
        ...
with
    best(dog) as ( 
        select "eisenhower" union
        select "barack"
    )
select parent from parents, best where child=dog;
```

Part of the select statement

with clause of a select statement names a table that is local to the statement
Local Tables

A `create table` statement names a table globally.

A `with` clause of a `select` statement names a table that is local to the statement.

```sql
create table parents as
    select "abraham" as parent, "barack" as child union

... Part of the select statement

with
    best(dog) as (
        select "eisenhower" union
        select "barack"
    )
select parent from parents, best where child=dog;
```

(Demo)
Example: Relationships

with

what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)

select child as __________, second as __________
from parents, what where parent=first;
Example: Relationships

(A) What are appropriate names for the columns in this result?

with
 what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)
 select child as _____________, second as ____________
 from parents, what where parent=first;
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

with

 what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)

select child as __________, second as __________
from parents, what where parent=first;
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

with
siblings
what(first, second) as (
 select a.child, b.child
 from parents as a, parents as b
 where a.parent = b.parent and
 a.child != b.child
)
select child as __________, second as __________
 from parents, what where parent=first;
Example: Relationships

(A) What are appropriate names for the columns in this result?
(B) How many rows and columns will result?

```
with siblings
  what(first, second) as (
    select a.child, b.child
    from parents as a, parents as b
    where a.parent = b.parent and
      a.child != b.child
  )

select child as ___________, second as ___________
  from siblings, what
    where parent=first;
```

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

```sql
with siblings
what(first, second) as (  
    select a.child, b.child  
    from parents as a, parents as b  
    where a.parent = b.parent and  
    a.child != b.child
)

select child as __________, second as __________
from parents, what where parent=first;
```

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

```sql
WITH siblings
WHAT(first, second) AS (  
    SELECT a.child, b.child  
    FROM parents AS a, parents AS b  
    WHERE a.parent = b.parent AND  
      a.child != b.child
  )

SELECT child AS __________, second AS __________  
FROM siblings, WHAT WHERE parent = first;
```

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

```sql
with siblings
   what(first, second) as ( 
       select a.child, b.child
         from parents as a, parents as b
         where a.parent = b.parent and
               a.child != b.child
   )

select child as __________, second as __________
from parents, what where parent=first;
```

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>
Example: Relationships

(A) What are appropriate names for the columns in this result?

(B) How many rows and columns will result?

```
with siblings
what(first, second) as (  
    select a.child, b.child
    from parents as a, parents as b
    where a.parent = b.parent and
    a.child != b.child
)

select child as ________, second as ________
from siblings
where parent=first;
```

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
<th>first</th>
<th>second</th>
</tr>
</thead>
<tbody>
<tr>
<td>abraham</td>
<td>barack</td>
<td>abraham</td>
<td>delano</td>
</tr>
</tbody>
</table>

parents:

- Eisenhower
- Fillmore
- Abraham
- Barack
- Clinton
- Delano
- Herbert
- Grover

siblings:

- nephew
- uncle
- parent
- child

first

second
Recursive Local Tables
Local Tables can be Declared Recursively
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as
select "abraham" as parent, "barack" as child union
...

parents:

- Eisenhower
- Fillmore
- Abraham
- Delano
- Grover
- Barack
- Clinton
- Herbert
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as
 select "abraham" as parent, "barack" as child union
...
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as
 select "abraham" as parent, "barack" as child union
 ...

ancestors(ancestor, descendent)
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as
select "abraham" as parent, "barack" as child union
...

ancestors(ancestor, descendent) as (
select parent, child from parents union
select ancestor, child
from ancestors, parents
where parent = descendent
)
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as
 select "abraham" as parent, "barack" as child union
 ...

with
 ancestors(ancestor, descendent) as (
 select parent, child from parents union
 select ancestor, child
 from ancestors, parents
 where parent = descendent
)
 select ancestor from ancestors where descendent="herbert";
Local Tables can be Declared Recursively

An ancestor is your parent or an ancestor of your parent

create table parents as
 select "abraham" as parent, "barack" as child union ...

with

 ancestors(ancestor, descendent) as (
 select parent, child from parents union
 select ancestor, child
 from ancestors, parents
 where parent = descendent
)

 select ancestor from ancestors where descendent="herbert";
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

create table odds as
 with
 odds(n) as (
 select 1 union
 select n+2 from odds where n < 15
)
 select n from odds;
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```sql
create table odds as
    with
        odds(n) as (
            select 1 union
            select n+2 from odds where n < 15
        )
    select n from odds;
```

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```
create table odds as
    with
        odds(n) as (
            select 1 union
            select n+2 from odds where n < 15
        )
    select n from odds;
```

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```sql
create table odds as
    with
    odds(n) as (  
        select 1 union
        select n+2 from odds where n < 15
    )
    select n from odds;
```

Which names above can change without affecting the result?
Global Names for Recursive Tables

To create a table with a global name, you need to select the contents of the local table

```
create table odds as
    with
        odds(n) as ( 
            select 1 union
            select n+2 from odds where n < 15;
        )
    select n from odds;
```

Which names above can change without affecting the result?
Limits on Recursive Select Statements
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause.

No mutual recursion: two or more tables cannot be defined in terms of each other.
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause.

No mutual recursion: two or more tables cannot be defined in terms of each other.

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens
  ),
  evens(x) as (  
    select x+1 from odds
  )
select x from odds
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```
with
    odds(x) as (
        select 1 union select x+1 from evens
    ),
    evens(x) as (
        select x+1 from odds
    )
select x from odds
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens
  ),
  evens(x) as (  
    select x+1 from odds
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens
  ),
  evens(x) as (  
    select x+1 from odds
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause

```sql
with
  ints(x) as (  
    select 1 union  
    select x-1 from ints union  
    select x+1 from ints
  )
select x from ints;
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens 
  ),
  evens(x) as (  
    select x+1 from odds 
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause

```sql
with
  ints(x) as (  
    select 1 union 
    select x-1 from ints union 
    select x+1 from ints 
  )
select x from ints;
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```
with
  odds(x) as (  
    select 1 union select x+1 from evens 
  ),
  evens(x) as ( 
    select x+1 from odds 
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause

```
with
  ints(x) as ( 
    select 1 union
    select x-1 from ints union 
    select x+1 from ints
  )
select x from ints;
```

```
with
  ints(x) as ( 
    select a.x + b.x 
    from ints as a, ints as b
  )
select x from ints;
```
Limits on Recursive Select Statements

Recursive table definitions are only possible within a with clause

No mutual recursion: two or more tables cannot be defined in terms of each other

```sql
with
  odds(x) as (  
    select 1 union select x+1 from evens  
  ),
  evens(x) as (  
    select x+1 from odds  
  )
select x from odds
```

No tree recursion: the table being defined can only appear once in a from clause

```sql
with
  ints(x) as (  
    select 1 union  
    select x-1 from ints union  
    select x+1 from ints  
  )
select x from ints;
```

```sql
with
  ints(x) as (  
    select 1 union  
    select a.x + b.x  
    from ints as a, ints as b  
  )
select x from ints;
```
String Examples
Language is Recursive
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird

The dog chased the cat

that the bird chased
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird

The dog chased the cat

that the bird chased

The dog chased the cat

the bird chased
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird

The dog chased the cat

that the bird chased

The dog chased the cat

the bird chased

The dog the bird the cat chased chased chased chased me
Noun phrases can contain relative pronouns that introduce relative clauses

```
The dog chased the cat
  that chased the bird

The dog chased the cat
  that the bird chased

The dog chased the cat
  the bird chased

The dog the bird the cat chased chased chased me

Bulldogs bulldogs bulldogs fight fight fight
```
Language is Recursive

Noun phrases can contain relative pronouns that introduce relative clauses

The dog chased the cat

that chased the bird

The dog chased the cat

that the bird chased

The dog chased the cat

the bird chased

The dog the bird the cat chased chased chased me

Bulldogs bulldogs bulldogs fight fight fight

(Demo)
Integer Examples
Input-Output Tables

A table containing the inputs to a function can be used to map from output to input.
A table containing the inputs to a function can be used to map from output to input.

```sql
create table pairs as
with
  i(n) as (
    select 1 union
    select n+1 from i where n < 50
  )
select a.n as x, b.n as y from i as a, i as b where a.n <= b.n;
```
Input-Output Tables

A table containing the inputs to a function can be used to map from output to input

```sql
create table pairs as
  with
    i(n) as (  
      select 1 union  
      select n+1 from i where n < 50  
    )  
  select a.n as x, b.n as y from i as a, i as b where a.n <= b.n;
```

What integers can I add/multiply together to get 24?
Input-Output Tables

A table containing the inputs to a function can be used to map from output to input

create table pairs as
 with
 i(n) as (
 select 1 union
 select n+1 from i where n < 50
)
 select a.n as x, b.n as y from i as a, i as b where a.n <= b.n;

What integers can I add/multiply together to get 24?

(Demo)
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$

with

$$i(n) \text{ as } ($$

$$\text{select 1 union select n+1 from i where n < 20}$$

$$)$$

$$\text{select } a.n \text{ as } a, b.n \text{ as } b, c.n \text{ as } c$$

$$\text{from } \\
\text{where } \\
\text{and } a.n*a.n + b.n*b.n = c.n*c.n;$$
Example: Pythagorean Triples

All triples \(a, b, c\) such that \(a^2 + b^2 = c^2\)

with

\[i(n)\text{ as (}
\begin{align*}
 &\text{select 1 union select } n+1\text{ from } i\text{ where } n < 20 \\
\end{align*}
\]

\[\text{select } a.n\text{ as } a, b.n\text{ as } b, c.n\text{ as } c
\]

\[\text{from } \text{______________________________}
\]

\[\text{where } \text{__________ and } a.n\times a.n + b.n\times b.n = c.n\times c.n;
\]
Example: Pythagorean Triples

All triples a, b, c such that $a^2 + b^2 = c^2$

with

$i(n)$ as (
 select 1 union select n+1 from i where n < 20
)

select $a.n$ as a, $b.n$ as b, $c.n$ as c

from __

where $a.n < b.n$ and $a.n*a.n + b.n*b.n = c.n*c.n$;

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
Example: Fibonacci Sequence
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

create table fibs as
with
 fib(previous, current) as (
 select 0, 1 union
 select current, previous+current from fib
 where current <= ________________
)
 select _________________ as n from fib;

fibs:
0
1
1
2
3
5
8
13
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

create table fibs as

with

 fib(previous, current) as (
 select 0, 1 union
 select current, previous+current from fib
 where current <= ________________
)

 select ________________ as n from fib;

<table>
<thead>
<tr>
<th>fibs: n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
Example: Fibonacci Sequence

Computing the next Fibonacci number requires both the previous and current numbers.

create table fibs as

 with

 fib(previous, current) as (
 select 0, 1 union
 select current, previous+current from fib

 where current <= 14.15926535
)

 select previous as n from fib;

<table>
<thead>
<tr>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
The mathematician G. H. Hardy once remarked to the mathematician Srinivasa Ramanujan...
A Very Interesting Number

The mathematician G. H. Hardy once remarked to the mathematician Srinivasa Ramanujan...