1 Introduction

In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs, we will eventually write a Scheme interpreter in Project 4!

Scheme is a dialect of the Lisp programming language, a language dating back to 1958. The popularity of Scheme within the programming language community stems from its simplicity – in fact, previous versions of CS 61A were taught in the Scheme language.

2 Primitives

Scheme has a set of atomic primitive expressions. Atomic means that these expressions cannot be divided up.

```scheme
scl> 123
123
scl> 123.123
123.123
scl> #t
True
scl> #f
False
scl> 'a ; this is a symbol
a
```
To define variables:

```scheme
scm> (define a 3)
```

```
a
```

```
scm> a
```

```
3
```

The `define` statement binds a value to a variable (just like the assignment operator in Python); in addition, define returns the variable name (in this case, `a`).

More precisely, `define` returns the symbol `a`. As you saw above, when you type `'a`, you also get the symbol `a`. This is because when you use the single quote, you’re telling Scheme not to follow the normal rules of evaluation and just have the symbol return as itself.

2.1 Questions

1. What would Scheme print?

```scheme
scm> (define a 1)
```

```
scm> a
```

```
scm> (define b a)
```

```
scm> b
```

```
scm> (define c 'a)
```

```
scm> c
```
3 Call Expressions

Now, just defining variables and printing out primitives isn’t very useful. You want to call functions too:

```scheme
scm> (+ 1 2)
3
scm> (/ 5 2)
2.5
scm> (+ 1 (* 3 4))
13
```

To call a function in Scheme, you first need a set of parentheses. Inside the parentheses, you specify a function, then the arguments (remember the spaces!).

Evaluating a Scheme function call works just like Python:

1. Evaluate the operator (the first expression after the ()), then evaluate each of the operands.
2. Apply the operator to those evaluated operands.

When you evaluate `(+ 1 2)`, you evaluate the `+` symbol, which is bound to a built-in addition function. Then, you evaluate 1 and 2, which are primitives. Finally, you apply the addition function to 1 and 2.

Some important built-in functions you’ll want to know are:

- `+`, `-`, `*`, `/`
- `eq?`, `=`, `>`, `>=`, `<`, `<=`

3.1 Questions

1. What would Scheme print?

```scheme
scm> (+ 1)
scm> (* 3)
scm> (+ (* 3 3) (* 4 4))
scm> (define a (define b 3))
scm> a
scm> b
```
4 Special Forms

There are certain expressions that look like function calls, but don’t follow the rule for order of evaluation. These are called special forms. You’ve already seen one — define, where the first argument, the variable name, doesn’t actually get evaluated to a value.

4.1 If Statements

Another common special form is the if form. An if expression looks like:

\[
(\text{if } <\text{CONDITION}> <\text{THEN}> <\text{ELSE}>)
\]

where <CONDITION>, <THEN> and <ELSE> are expressions. First, <CONDITION> is evaluated. If it evaluates to False, then <ELSE> is evaluated. Otherwise, <THEN> is evaluated. Only False and #f evaluate to False; everything else is truth-y.

\[
\text{scm} > (\text{if } (< 4 5) 1 2)
\]

1

\[
\text{scm} > (\text{if } \text{False} (/ 1 0) 42)
\]

42

4.2 Boolean operators

Boolean operators (and and or) are also special forms because they are short-circuiting operators (just like in Python).

\[
\text{scm} > (\text{and } 1 2 3)
\]

3

\[
\text{scm} > (\text{or } 1 2 3)
\]

1

\[
\text{scm} > (\text{or } \text{True} (/ 1 0))
\]

True

\[
\text{scm} > (\text{and } \text{False} (/1 0))
\]

False

\[
\text{scm} > (\text{not } 3)
\]

False

\[
\text{scm} > (\text{not } \text{True})
\]

False
4.3 Questions

1. What does Scheme print?

   ```scheme
   scm> (if (or #t (/ 1 0)) 1 (/ 1 0))
   scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))
   scm> ((if (< 4 3) +) -) 4 100)
   scm> (if 0 1 2)
   ```

4.4 Lambdas and Defining Functions

Scheme has lambdas too! The syntax is

```
(lambda (<PARAMETERS>) <EXPR>)
```

Like in Python, lambdas are function values. Also like in Python, when a lambda expression is called in Scheme, a new frame is created where the parameters are bound to the arguments passed in. Then, `<EXPR>` is evaluated in this new frame. Note that `<EXPR>` is not evaluated until the lambda function is called.

```scheme
scm> (define x 3)
x
scm> (define y 4)
y
scm> ((lambda (x y) (+ x y)) 6 7)
13
```

Like in Python, lambda functions are also values! So you can do this to define functions:

```scheme
scm> (define square (lambda (x) (* x x)))
square
scm> (square 4)
16
```

This can be a bit tedious though. Luckily Scheme has a shortcut: our old friend `define`:

```scheme
scm> (define (square x) (* x x))
square
scm> (square 5)
25
```

When you do `(define (<FUNCTION NAME> <PARAMETERS>) <EXPR>)`, Scheme will automatically transform it to `(define <FUNCTION NAME> (lambda (<PARAMETERS>) <EXPR>)`. In this way, lambdas are more central to Scheme than they are to Python.
4.5 Let

There is also a special form based around `lambda`: `let`. The structure of `let` is as follows:

```
(let ( (<SYMBOL1> <EXPR1>)
   ...  
   (<SYMBOLN> <EXPRN>) )
  <BODY> )
```

This special form really just gets transformed to:

```
( (lambda (<SYMBOL1> ... <SYMBOLN>) <BODY>) <EXPR1> ... <EXPRN>)
```

`let` effectively binds symbols to expressions, then runs the body of the `let` form. This can be useful if you need to reuse a value multiple times, or if you want to make your code more readable.

For example, we can use the approximation \(\sin(x) \approx x \) (which is true for small \(x \)) and the trigonometric identity \(\sin(x) = 3 \sin(x/3) - 4 \sin^3(x/3) \) to approximate \(\sin(x) \) for any \(x \).

```
(define (sin x)
   (if (< x 0.000001)
      x
      (let ( (recursive-step (sin (/ x 3)))
               (- (* 3 recursive-step)
                   (* 4 (expt recursive-step 3)))))))
```

4.6 Questions

1. Write a function that calculates factorial. (Note we have not seen any iteration yet.)

```
(define (factorial x)
)
```

2. Write a function that calculates the \(n^{th} \) Fibonacci number.

```
(define (fib n)
   (if (< n 2)
      1
      )
)
```
So far, we have lambdas and a few atomic primitives. How do we create larger, more complicated data structures? Well, the most important data structure in Scheme is the pair. A pair is an abstract data type with the constructor \texttt{cons} (which takes two arguments), and two selectors, \texttt{car} and \texttt{cdr} (which get the first and second argument respectively). \texttt{car} and \texttt{cdr} don’t stand for anything anymore, but if you want the history go to \url{http://en.wikipedia.org/wiki/CAR_and_CDR}.

\begin{verbatim}
scm> (define a (cons 1 2))
a
scm> a
(1 . 2)
scm> (car a)
1
scm> (cdr a)
2
\end{verbatim}

Note that when a pair is printed, the \texttt{car} and \texttt{cdr} elements are separated by a period. Remember, \texttt{cons} always takes in exactly two arguments.

A common data structure that you build out of pairs is the list. A list is either the empty list, which is another primitive represented as ‘() or \texttt{nil}, or a \texttt{cons} pair where the \texttt{cdr} is a list. (Note the similarity to Links!)

\begin{verbatim}
scm> '()
()
scm> nil
()
scm> (cons 1 (cons 2 nil))
(1 2)
\end{verbatim}

Note that there are no dots here. When a dot is followed by a left parenthesis, the dot, left parenthesis, and matching right parenthesis are deleted. You can check if a list is \texttt{nil} with the \texttt{null?} function.

A shorthand for writing out a list is:

\begin{verbatim}
scm> '(1 2 3)
(1 2 3)
scm> '(define (square x) (* x x))
(define (square x) (* x x))
\end{verbatim}

You might notice that the evaluation of the second expression looks a lot like Scheme code. That’s because Scheme code is made up of lists! When you quote an expression (like a list), you’re telling Scheme not to evaluate the expression, but instead keep it as is. This is one of the reasons why Scheme is cool – it can be defined within itself!
5.1 Questions

1. Define `map`, which takes function `fn` and a list `lst`. It applies the function `fn` to every element of `lst` and returns a list containing the results.

   ```scheme
   (define (map fn lst)
     ...)
   
   scm> (map (lambda (x) (* x x)) '(1 2 3))
   (1 4 9)
   ```

2. Define `concat`, which takes a list of lists, and constructs a list by concatenating all the elements together into one list. Use the built-in `append` function to concatenate two lists.

   ```scheme
   (define (concat lsts)
     ...)
   
   scm> (append '(1 4 7) '(2 5 8))
   (1 4 7 2 5 8)
   scm> (concat '(((1 4 7) (2 5 8) (3 6 9)))
   (1 4 7 2 5 8 3 6 9)
   ```
3. Define \texttt{replicate}, which takes an element \textit{x} and a non-negative integer \textit{n}, and returns a list with \textit{x} repeated \textit{n} times.

\begin{verbatim}
(define (replicate x n))
\end{verbatim}

\texttt{scm> (replicate 5 3)}
\texttt{(5 5 5)}

4. A \textbf{run-length encoding} is a method of compressing a sequence of letters. The list \texttt{(a a a b a a a a)} can be compressed to \texttt{((a 3) (b 1) (a 4))}, where the compressed version of the sequence keeps track of how many letters appear consecutively.

Write a Scheme function that takes a compressed sequence and expands it into the original sequence. \textit{Hint:} try to use functions you defined earlier in this worksheet.

\begin{verbatim}
(define (uncompress s))
\end{verbatim}

\texttt{scm> (uncompress '((a 1) (b 2) (c 3)))}
\texttt{(a b b c c c)}
5. Define `deep-apply`, which takes a nested list and applies a given function to every element. For the purposes of this question, a *nested list* is either

- a single element (e.g. 4)
- a list of nested lists (e.g. (1 ((4) 5) 9)).

`deep-apply` should return a nested list with the same shape as the input list, but with each element replaced by the result of applying the given function to that element. Use the built-in `list?` function to detect whether a value is a list.

```scheme
(define (deep-apply fn nested-list)
)
```

```scheme
scm> (deep-apply (lambda (x) (* x x)) '(1 2 3))
(1 4 9)
scm> (deep-apply (lambda (x) (* x x)) '(1 ((4) 5) 9))
(1 ((16) 25) 81)
scm> (deep-apply (lambda (x) (* x x)) 2)
4
```
1. Fill in the following to complete an abstract tree data type:
 `(define (make-tree entry children) (cons entry children))`

 `(define (entry tree) ...)`

 `(define (children tree) ...)`

2. Using the abstract data type above, write a function that sums up the entries of a tree, assuming that the entries are all numbers. Hint: you may want to use the `map` function you defined above, as well as an additional helper function.
 `(define (tree-sum tree) ...)`
3. Using the abstract data type above, write a Scheme function that creates a new tree where the entries are the product of the entries along the path to the root in the original tree. Hint: you may want to write helper functions.

```
(define (path-product-tree t)
  ; your implementation here
)
```