Iterators

An iterator is an object that tracks the position in a sequence of values. It can return an element at a time, and it is only good for one pass through the sequence. The following is an example of a class that implements Python's iterator interface. This iterator calculates all of the natural numbers one-by-one, starting from zero:

```python
class Naturals():
    def __init__(self):
        self.current = 0

    def __next__(self):
        result = self.current
        self.current += 1
        return result

    def __iter__(self):
        return self
```

An iterator is an object that has a `__next__` and an `__iter__` method.

1.1 __next__

The `__next__` method checks if it has any values left in the sequence; if it does, it computes the next element. To return the next value in the sequence, the `__next__` method keeps track of its current position in the sequence. If there are no more values left to
compute, it must raise an exception called `StopIteration`. This signals the end of the sequence.

Note: the `__next__` method defined in the `Naturals` class does *not* raise `StopIteration` because there is no “last natural number”.

1.2 `__iter__`

The `__iter__` method returns an iterator object. If a class implements both a `__next__` method and an `__iter__` method, its `__iter__` method can simply return `self` as the class itself is an iterator. In fact, the Python docs require that all iterators’ `__iter__` methods must return `self`.

1.3 Iterables

An *iterable* object represents a sequence. Examples of iterables are lists, tuples, strings, and dictionaries. The iterable class must implement an `__iter__` method, which returns an iterator. Note that since all iterators have an `__iter__` method, they are all iterable.

In general, a sequence’s `__iter__` method will return a new iterator every time it is called. This is because an iterator cannot be reset. Returning a new iterator allows us to iterate through the same sequence multiple times.

1.4 Implementation

When defining an iterator, you should always keep track of current position in the sequence. In the `Naturals` class, we use `self.current` to save the position.

Iterator objects maintain state. Each successive call to `__next__` will return the next element, which may be different, so `__next__` is considered *non-pure*.

Python has built-in functions called `next` and `iter` that call `__next__` and `__iter__` respectively.

For example, this is how we could use the `Naturals` iterator:

```python
>>> nats = Naturals()
>>> next(nats)
0
>>> next(nats)
1
>>> next(nats)
2
```
1.5 Questions

1. Define an iterator whose \(i \)th element is the result of combining the \(i \)th elements of two input iterators using some binary operator, also given as input. The resulting iterator should have a size equal to the size of the shorter of its two input iterators.

```python
>>> from operator import add
>>> evens = IteratorCombiner(Naturals(), Naturals(), add)
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4

class IteratorCombiner(object):
    def __init__(self, iterator1, iterator2, combiner):
        
        def __next__(self):
            
        def __iter__(self):
            
2. What is the result of executing this sequence of commands?

```
1.6 Extra Question

1. Create an iterator that generates the sequence of Fibonacci numbers.
   ```python
class FibIterator(object):
    def __init__(self):
      
    def __next__(self):
      
    def __iter__(self):
      return self
   ```

2 Streams

2.1 Introduction

In Python, iterators and generators allow lazy evaluation in order to represent infinite sequences. However, Scheme does not support iterators. Let’s see what happens when we use a Scheme list to represent an infinite sequence of natural numbers.

```scheme
scm> (define (naturals n)
(cons n (naturals (+ n 1))))
naturals
scm> (naturals 0)
Error: maximum recursion depth exceeded
```

Because the second argument to `cons` is always evaluated, we cannot create an infinite sequence of integers using a Scheme list. Instead, Scheme uses streams!

A stream is a lazily computed Scheme list, where the first element is represented explicitly. The rest of the stream’s elements are only computed when needed. Let’s try to implement the sequence of natural numbers again using a stream!

```scheme
scm> (define (naturals n)
(cons-stream n (naturals (+ n 1))))
naturals
scm> (define nat (naturals 0))
nat
```
Instead of specifying all of the elements when defining our stream expression, we call a function \texttt{cdr-stream} to compute the remaining elements of the stream. This lets us implement the desired lazy evaluation behavior.

Also, streams have \texttt{car} and \texttt{cdr} attributes like Scheme lists. The \texttt{cdr} of a Scheme list is either another Scheme list or \texttt{nil}. Likewise, the \texttt{cdr-stream} of a stream is either a stream or \texttt{nil}.

Besides \texttt{car} and \texttt{cdr}, you’ll need to know a few more procedures to implement streams:

- \texttt{cons-stream} creates a stream pair
- \texttt{cdr-stream} returns the stream stored in the rest of stream

2.2 Delayed Evaluation

When we construct a stream with \texttt{cons-stream}, the rest of the stream is a delayed expression.

\begin{verbatim}
scm> (cons-stream 1 nil)
(1 . #\[delayed])
\end{verbatim}

That delayed expression is called a \texttt{promise}, it represents a value that has not yet been evaluated. Scheme supports delayed evaluation with the \texttt{delay} and \texttt{force} primitives. The \texttt{delay primitive} creates a promise, which represent a guarantee to perform some evaluation when the \texttt{force procedure} is called on it.

A promise is only evaluated only once we call \texttt{cdr-stream} or \texttt{force}. When we first call \texttt{cdr} on our stream, the promise has not yet been evaluated, so the promise is marked as delayed. Once Scheme evaluates the promise, with \texttt{force} or \texttt{cdr-stream} the promise will be marked as evaluated (denoted by an underscore in front of the evaluated value.) _value when it is in a stream and as \texttt{cached:value} when it is a stand alone promise. Once a promise is evaluated, the computed result is saved, or \texttt{memoized}. After that, every time the \texttt{cdr-stream} field is referenced, the stored result is simply returned.

Let’s look at the \texttt{promise primitive} in our stream \texttt{naturals} defined in the previous subsection.

\begin{verbatim}
scm> (define nat (naturals 0))
nat
\end{verbatim}
You may be wondering how we created promises without ever calling delay or force! It turns out the cons-stream and cdr-stream are actually just wrappers for delay and force. cons-stream calls delay and cdr-stream calls force on the cdr of our stream.

```
scm> (define promise_me (delay (+ 3 4)))
promise_me
scm> promise_me
#[delayed]
scm> (force promise_me)
7
scm> promise_me
#[cached:7]
```
2.3 Questions

1. What would Scheme print?
 The following function has been defined for you:

 scm> (define (has-even? s)
 (cond ((null? s) False)
 ((even? (car s)) True)
 (else (has-even? (cdr-stream s)))))

 has-even?
 scm> (define ones (cons-stream 1 ones))

 scm> (define twos (cons-stream 2 twos))

 scm> ones
 scm> (cdr ones)
 scm> (cdr-stream ones)
 scm> (has-even? ones)
 scm> (has-even? twos)

2. Write map-stream, which takes a map-fn and a stream and returns a new stream, which has all the elements from stream, but with map-fn applied.

 (define (map-stream map-fn stream)
)

 scm> (define evens (map-stream (lambda (x) (* x 2)) nat))

 evens
 scm> (cdr-stream evens)
 (2 . #[delayed])
3. There are some dangers with Streams! Compare the following two implementations of \texttt{filter-stream}, the first is a correct implementation, the second is wrong in some way. What’s wrong with the second implementation?

; Correct
(define (filter-stream f s)
 (if (null? s)
 nil
 (if (f (car s))
 (cons-stream (car s)
 (filter-stream f (cdr-stream s)))
 (filter-stream f (cdr-stream s)))
)
)

; Incorrect
(define (filter-stream f s)
 (if (null? s)
 nil
 (let ((rest (filter-stream f (cdr-stream s))))
 (if (f (car s))
 (cons-stream (car s) rest)
 rest)
)
)
)
4. Write a function `slice` which takes a stream a start, and an end, and returns a scheme list that contains the elements of stream between index start to end, not including end. If the stream ends before end, you can return nil.

```scheme
(define (slice stream start end))
```

```scheme
scm> (slice nat 4 12)
(4 5 6 7 8 9 10 11)
```

5. Let's practice creating streams. The fibonacci sequence is a classic infinite sequence. Implement `make-fib-stream`, which takes two numbers and produces a stream of fibonacci numbers starting with those two numbers.

```scheme
(define (make-fib-stream a b))
```

```scheme
scm> (define fib-stream (make-fib-stream 0 1))
fib-stream
scm> (slice fib-stream 0 10)
(0 1 1 2 3 5 8 13 21 34)
```
6. Since Streams only evaluate the next element when they are needed, we can combine infinite streams together for interesting results! We’ve defined the function `zip-with` for you below. Use it to define a few of our favorite sequences.

```scheme
(define (zip-with f xs ys)
  (if (or (null? xs) (null? ys))
      nil
      (cons-stream
       (f (car xs) (car ys))
       (zip-with f (cdr-stream xs) (cdr-stream ys))
      )))
```

```
scm> (define evens (zip-with + (naturals 0) (naturals 0)))
evans
scm> (slice evens 0 10)
(0 2 4 6 8 10 12 14 16 18)
(define factorials

scm> (slice factorials 0 10)
(1 1 2 6 24 120 5040 40320 362880)
(define fibs

scm> (slice fibs 0 10)
(0 1 1 2 3 5 8 13 21 34)
```
2.4 Extra Questions

1. Write a function `range-stream` which takes a `start` and `end` argument, and returns a stream that represents the integers between included `start` and `end - 1`.

 (define (range-stream start end)
 ...

2. Prime numbers are another type of infinite stream, albeit a little harder to generate. Define a function `sieve`, which takes a stream of increasing numbers, and returns a stream of only those numbers which are not multiples of an earlier number in the stream. We can define `primes` by sifting all natural numbers starting at 2. Look online for the Sieve of Eratosthenes if you need some inspiration.

 (define (sieve s)
 ...

 (define primes
 (sieve (naturals 2)))
 scm> (slice primes 0 10)
 (2 3 5 7 11 13 17 19 23 29)