Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person
- Your score is the number of entries against which you win more than 50,00001% of the time
- All strategies must be deterministic, pure functions of the players' scores
- All winning entries will receive extra credit
- The real prizes: honor and glory

Fall 2011 Winners
- Kaylee Mann
- Yan Duan & Ziming Li
- Brian Prisk & Zhengao Qian
- Parker Schuh & Robert Chatham
- Chenyang Yuan
- Joseph Hui

Fall 2012 Winners
- Paul Brasen
- San Kumar & Kangsik Lee
- Kevin Chen

Fall 2013 Winners
- Alan Tong & Elaine Zhao
- Zhenyang Zhang
- Adam Robert Villaflo & Joony Gao
- Zichen Tai & Yile Li

Spring 2013 Winners
- Sinho Choi & Alexander Nguyen Tran
- Zhen Qin & Dian Chen
- Kaylee Mann
- Yan Duan & Ziming Li
- Brian Prisk & Zhengao Qian
- Parker Schuh & Robert Chatham
- Chenyang Yuan
- Joseph Hui

Fall 2015 Winners
- Paul Brasen
- San Kumar & Kangsik Lee
- Kevin Chen

Fall 2016 Winners
- Micah Carroll & Vasilis Oikonomou
- Matthew Wu
- Anthony Yeung and Alexander Dai

Two Definitions of Cascade

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure

Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    if n:
        f(n)
        g(n)
```

```python
def inverse_cascade(n):
    grow = lambda n: f_then_g(grow, n)
    shrink = lambda n: f_then_g(shrink, n)
```
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\[
\begin{align*}
n &: 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
fib(n) &: 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

A Tree-Recursive Process

The computational process of \texttt{fib} evolves into a tree structure.

Repetition in Tree-Recursive Computation

This process is highly repetitive; \texttt{fib} is called on the same argument multiple times.

Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don’t use any 4
- Solve two simpler problems:
 - \texttt{count_partitions}(2, 4)
 - \texttt{count_partitions}(6, 3)
- Tree recursion often involves exploring different choices.

\[
\begin{align*}
\text{count_partitions}(6, 4) &: 2 + 4 = 6 \\
&= 1 + 1 + 4 = 6 \\
&= 1 + 3 = 6 \\
&= 1 + 2 + 3 = 6 \\
&= 1 + 1 + 1 + 3 = 6 \\
&= 2 + 2 + 2 = 6 \\
&= 1 + 1 + 2 + 2 = 6 \\
&= 1 + 1 + 1 + 1 + 2 = 6 \\
&= 1 + 1 + 1 + 1 + 1 + 1 = 6
\end{align*}
\]