61A Lecture 7
Announcements
Hog Contest Rules

[cs61a.org/proj/hog_contest]
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person

[link to hog contest rules page]
Hog Contest Rules

- Up to two people submit one entry;
 Max of one entry per person
- Your score is the number of entries
 against which you win more than
 50.00001% of the time

[cs61a.org/proj/hog_contest]
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50.00001% of the time
• All strategies must be deterministic, pure functions of the players' scores
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person
• Your score is the number of entries
 against which you win more than
 50.00001% of the time
• All strategies must be deterministic,
 pure functions of the players' scores
• All winning entries will receive
 extra credit
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person
• Your score is the number of entries
 against which you win more than
 50.00001% of the time
• All strategies must be deterministic,
 pure functions of the players' scores
• All winning entries will receive
 extra credit
• The real prize: honor and glory
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50.00001% of the time
• All strategies must be deterministic, pure functions of the players' scores
• All winning entries will receive extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

cs61a.org/proj/hog_contest
Hog Contest Rules

• Up to two people submit one entry;
 Max of one entry per person
• Your score is the number of entries
 against which you win more than
 50.00001% of the time
• All strategies must be deterministic,
 pure functions of the players' scores
• All winning entries will receive
 extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

cs61a.org/proj/hog_contest
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50.00001% of the time
• All strategies must be deterministic, pure functions of the players' scores
• All winning entries will receive extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

cs61a.org/proj/hog_contest
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50.00001% of the time
• All strategies must be deterministic, pure functions of the players' scores
• All winning entries will receive extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

cs61a.org/proj/hog_contest
Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person
- Your score is the number of entries against which you win more than 50.00001% of the time
- All strategies must be deterministic, pure functions of the players' scores
- All winning entries will receive extra credit
- The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Spring 2015 Winners
Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

cs61a.org/proj/hog_contest
Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person
• Your score is the number of entries against which you win more than 50.00001% of the time
• All strategies must be deterministic, pure functions of the players' scores
• All winning entries will receive extra credit
• The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Spring 2015 Winners
Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

Fall 2015 Winners
Micah Carroll & Vasilis Oikonomou
Matthew Wu
Anthony Yeung and Alexander Dai

cs61a.org/proj/hog_contest
Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person
- Your score is the number of entries against which you win more than 50.00001% of the time
- All strategies must be deterministic, pure functions of the players' scores
- All winning entries will receive extra credit
- The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Spring 2015 Winners
Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

Fall 2015 Winners
Micah Carroll & Vasilis Oikonomou
Matthew Wu
Anthony Yeung and Alexander Dai

Fall 2016 Winners...

cs61a.org/proj/hog_contest
Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person
- Your score is the number of entries against which you win more than 50.00001% of the time
- All strategies must be deterministic, pure functions of the players' scores
- All winning entries will receive extra credit
- The real prize: honor and glory

Fall 2011 Winners
Kaylee Mann
Yan Duan & Ziming Li
Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners
Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Spring 2015 Winners
Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

Fall 2015 Winners
Micah Carroll & Vasilis Oikonomou
Matthew Wu
Anthony Yeung and Alexander Dai

Fall 2016 Winners...
Order of Recursive Calls
The Cascade Function

(Demo)

Interactive Diagram
The Cascade Function

```
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8     cascade(123)
```

(Demo)

Interactive Diagram
The Cascade Function

```python
1 def cascade(n):
2     if n < 10:
3         print(n)
4     else:
5         print(n)
6         cascade(n//10)
7         print(n)
8
cascade(123)
```

Program output:
123
12
1
12

Interactive Diagram
The Cascade Function

```python
1   def cascade(n):
2       if n < 10:
3           print(n)
4       else:
5           print(n)
6           cascade(n//10)
7       print(n)
8
9   cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to `cascade`.

Interactive Diagram
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)

cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.

Interactive Diagram
The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)

cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Interactive Diagram
The Cascade Function

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

Program output:

```
123
12
1
12
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Interactive Diagram
The Cascade Function

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)
cascade(123)

Program output:
123
12
1
12

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
The Cascade Function

• Each cascade frame is from a different call to cascade.
• Until the Return value appears, that call has not completed.
• Any statement can appear before or after the recursive call.

Program output:

123
12
1
12

Interactive Diagram
The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

(Demo)

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

Program output:
```
123
12
1
12
```
Two Definitions of Cascade

(Demo)
Two Definitions of Cascade

(Demo)

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
Two Definitions of Cascade

(Demo)

```python
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

```python
def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)
```

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
- Both are recursive functions, even though only the first has typical structure
Example: Inverse Cascade
Inverse Cascade

Write a function that prints an inverse cascade:
Inverse Cascade

Write a function that prints an inverse cascade:

```
1
12
123
1234
123
12
1
1
```
Inverse Cascade

Write a function that prints an inverse cascade:

```
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
grow(n)
print(n)
shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
g(n)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

grow = lambda n: f_then_g(grow, shrink, n)
shrink = lambda n: f_then_g(grow, shrink, n)
```
Inverse Cascade

Write a function that prints an inverse cascade:

```python
def inverse_cascade(n):
    grow(n)
    print(n)
    shrink(n)

def f_then_g(f, g, n):
    if n:
        f(n)
        g(n)

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)
```
Tree Recursion
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[n: 0, 1, 2, 3, 4, 5, 6, 7, 8, \]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

n: 0, 1, 2, 3, 4, 5, 6, 7, 8,

fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21,
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
 n &: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
 \text{fib}(n) &: \quad 0, 1, 1, 2, 3, 5, 8, 13, 21,
\end{align*}
\]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465 \\
\end{align*}
\]

```python
def fib(n):
    if n == 0:
```
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{array}{cccccccccccc}
\text{n:} & 0, & 1, & 2, & 3, & 4, & 5, & 6, & 7, & 8, & \ldots, & 35 \\
\text{fib(n):} & 0, & 1, & 1, & 2, & 3, & 5, & 8, & 13, & 21, & \ldots, & 9,227,465 \\
\end{array}
\]

def fib(n):
 if n == 0:
 return 0

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call

\[
\begin{align*}
\text{n:} & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```
Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\[
\begin{align*}
 n: & \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
 \text{fib}(n): & \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\[n: \quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \]

\[\text{fib}(n): \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465 \]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return 1
```

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\[
\begin{align*}
\text{n:} &\quad 0, 1, 2, 3, 4, 5, 6, 7, 8, \ldots, 35 \\
\text{fib(n):} &\quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots, 9,227,465
\end{align*}
\]

```python
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```

A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

fib(5)
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
fib(5)
  \------->
   fib(3)
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
   fib(5)
  /     \
fib(3)   fib(4)
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

```
fib(5)
  /   \
/     \
fib(3)  fib(4)
  /   \
/     \
fib(1) fib(2)
  /   \
/     \
fib(0) fib(1)
  /   \
/     \
0     1
```

```
fib(3)
  /   \
/     \
fib(1) fib(2)
  /   \
/     \
fib(0) fib(1)
  /   \
/     \
0     1
```

```
fib(4)
  /   \
/     \
fib(2)
  /   \
/     \
fib(0) fib(1)
  /   \
/     \
0     1
```

```
fib(2)
  /   \
/     \
fib(0) fib(1)
  /   \
/     \
0     1
```

```
fib(1)
  /   \
/     \
fib(0) fib(1)
  /   \
/     \
0     1
```

```
fib(0)
  /   \
/     \
0     1
```
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
The computational process of fib evolves into a tree structure.
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure

![Tree Diagram](image-url)
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
A Tree-Recursive Process

The computational process of fib evolves into a tree structure
Repetition in Tree-Recursive Computation
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

(We will speed up this computation dramatically in a few weeks by remembering results)
Example: Counting Partitions
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```python
count_partitions(6, 4)
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
2 + 4 = 6
\]
\[
1 + 1 + 4 = 6
\]
\[
3 + 3 = 6
\]
\[
1 + 2 + 3 = 6
\]
\[
1 + 1 + 1 + 3 = 6
\]
\[
2 + 2 + 2 = 6
\]
\[
1 + 1 + 2 + 2 = 6
\]
\[
1 + 1 + 1 + 1 + 2 = 6
\]
\[
1 + 1 + 1 + 1 + 1 + 1 = 6
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

\[
\begin{align*}
2 + 4 &= 6 \\
1 + 1 + 4 &= 6 \\
3 + 3 &= 6 \\
1 + 2 + 3 &= 6 \\
1 + 1 + 1 + 3 &= 6 \\
2 + 2 + 2 &= 6 \\
1 + 1 + 2 + 2 &= 6 \\
1 + 1 + 1 + 1 + 2 &= 6 \\
1 + 1 + 1 + 1 + 1 + 1 &= 6
\end{align*}
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

Recursive decomposition: finding simpler instances of the problem.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\begin{center}
\texttt{count_partitions(6, 4)}
\end{center}

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \text{count_partitions}(2, 4)
 - \text{count_partitions}(6, 3)
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
count_partitions(6, 4)
```

• Recursive decomposition: finding simpler instances of the problem.

• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4

• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

• Recursive decomposition: finding simpler instances of the problem.

• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4

• Solve two simpler problems:
 • \(\text{count_partitions}(2, 4) \)
 • \(\text{count_partitions}(6, 3) \)

• Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

\[
\text{count_partitions}(6, 4)
\]

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- **Recursive decomposition:** finding simpler instances of the problem.
- **Explore two possibilities:**
 - Use at least one 4
 - Don't use any 4
- **Solve two simpler problems:**
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- **Tree recursion often involves exploring different choices.**
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
```

Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    # Implementation goes here
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    else:
        with_m = count_partitions(n-m, m)
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n < m:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

16
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.

- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4

- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)

- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n\), using parts up to size \(m\), is the number of ways in which \(n\) can be expressed as the sum of positive integer parts up to \(m\) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4)\)
 - \(\text{count_partitions}(6, 3)\)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if m > n:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - \(\text{count_partitions}(2, 4) \)
 - \(\text{count_partitions}(6, 3) \)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - count_partitions(2, 4)
 - count_partitions(6, 3)
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

• Recursive decomposition: finding simpler instances of the problem.
• Explore two possibilities:
 • Use at least one 4
 • Don't use any 4
• Solve two simpler problems:
 • count_partitions(2, 4)
 • count_partitions(6, 3)
• Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
 - Use at least one 4
 - Don't use any 4
- Solve two simpler problems:
 - `count_partitions(2, 4)`
 - `count_partitions(6, 3)`
- Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```
Counting Partitions

The number of partitions of a positive integer \(n \), using parts up to size \(m \), is the number of ways in which \(n \) can be expressed as the sum of positive integer parts up to \(m \) in increasing order.

Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:
- Use at least one 4
- Don't use any 4

Solve two simpler problems:
- \(\text{count_partitions}(2, 4) \)
- \(\text{count_partitions}(6, 3) \)

Tree recursion often involves exploring different choices.

```python
def count_partitions(n, m):
    if n == 0:
        return 1
    elif n < 0:
        return 0
    elif m == 0:
        return 0
    else:
        with_m = count_partitions(n-m, m)
        without_m = count_partitions(n, m-1)
        return with_m + without_m
```

(Demo)

Interactive Diagram