Announcements
Unix
Computer Systems
Computer Systems

Systems research enables application development by defining and implementing abstractions:
Computer Systems

Systems research enables application development by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware
Computer Systems

Systems research enables application development by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware

- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure
Computer Systems

Systems research enables application development by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware
- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure
- **Databases** provide a declarative interface to complex software that stores and retrieves information efficiently
Computer Systems

Systems research enables application development by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware

- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure

- **Databases** provide a declarative interface to complex software that stores and retrieves information efficiently

- **Distributed systems** provide a unified interface to a cluster of multiple machines
Computer Systems

Systems research enables application development by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware
- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure
- **Databases** provide a declarative interface to complex software that stores and retrieves information efficiently
- **Distributed systems** provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:
Systems research enables application development by defining and implementing abstractions:

- **Operating systems** provide a stable, consistent interface to unreliable, inconsistent hardware.
- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure.
- **Databases** provide a declarative interface to complex software that stores and retrieves information efficiently.
- **Distributed systems** provide a unified interface to a cluster of multiple machines.

A unifying property of effective systems:

> Hide complexity, but retain flexibility.
Example: The Unix Operating System
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):
• **Portability:** The same operating system on different hardware
• **Multi-Tasking:** Many processes run concurrently on a machine
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

• **Portability**: The same operating system on different hardware
• **Multi-Tasking**: Many processes run concurrently on a machine
• **Plain Text**: Data is stored and shared in text format
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability:** The same operating system on different hardware
- **Multi-Tasking:** Many processes run concurrently on a machine
- **Plain Text:** Data is stored and shared in text format
- **Modularity:** Small tools are composed flexibly via pipes
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,“ Doug McIlroy in 1964.
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability**: The same operating system on different hardware
- **Multi-Tasking**: Many processes run concurrently on a machine
- **Plain Text**: Data is stored and shared in text format
- **Modularity**: Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose – screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix-like operating system are similar to Python iterators:

- Standard input
- Process
- Standard output
- Standard error

Text input
Text output
Example: The Unix Operating System

Essential features of the Unix operating system (and variants):

- **Portability:** The same operating system on different hardware
- **Multi-Tasking:** Many processes run concurrently on a machine
- **Plain Text:** Data is stored and shared in text format
- **Modularity:** Small tools are composed flexibly via pipes

“We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix–like operating system are similar to Python iterators (Demo)

```
cd .../assets/slides && ls *.pdf | cut -f 1 -d - | sort -r | uniq -c
```
Python Programs in a Unix Environment
Python Programs in a Unix Environment

The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files.
Python Programs in a Unix Environment

The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files.

A Python file has an interface that supports iteration, `read`, and `write` methods.
The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files.

A Python file has an interface that supports iteration, `read`, and `write` methods.

Using these "files" takes advantage of the operating system text processing abstraction.
Python Programs in a Unix Environment

The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files.

A Python file has an interface that supports iteration, `read`, and `write` methods.

Using these "files" takes advantage of the operating system text processing abstraction.

The `input` and `print` functions also read from standard input and write to standard output.
Python Programs in a Unix Environment

The `sys.stdin` and `sys.stdout` values provide access to the Unix standard streams as files.

A Python file has an interface that supports iteration, `read`, and `write` methods.

Using these "files" takes advantage of the operating system text processing abstraction.

The `input` and `print` functions also read from standard input and write to standard output.

(Demo)
Big Data
Big Data Examples

Examples from Anthony Joseph
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes

Google web index: 10+ Petabytes (10,000,000 Gigabytes)
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes

Google web index: 10+ Petabytes (10,000,000 Gigabytes)

Time to read 1 Terabyte from disk: 3 hours (100 Megabytes/second)
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes

Google web index: 10+ Petabytes (10,000,000 Gigabytes)

Time to read 1 Terabyte from disk: 3 hours (100 Megabytes/second)

Typical hardware for big data applications:

Facebook datacenter (2014)
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes

Google web index: 10+ Petabytes (10,000,000 Gigabytes)

Time to read 1 Terabyte from disk: 3 hours (100 Megabytes/second)

Typical hardware for big data applications:

Consumer-grade hard disks and processors

Facebook datacenter (2014)
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes

Google web index: 10+ Petabytes (10,000,000 Gigabytes)

Time to read 1 Terabyte from disk: 3 hours (100 Megabytes/second)

Typical hardware for big data applications:

Consumer-grade hard disks and processors

Independent computers are stored in racks

Facebook datacenter (2014)
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes

Google web index: 10+ Petabytes (10,000,000 Gigabytes)

Time to read 1 Terabyte from disk: 3 hours (100 Megabytes/second)

Typical hardware for big data applications:

- Consumer-grade hard disks and processors
- Independent computers are stored in racks
- Concerns: networking, heat, power, monitoring

Examples from Anthony Joseph
Big Data Examples

Facebook's daily logs: 60 Terabytes (60,000 Gigabytes)

1,000 genomes project: 200 Terabytes

Google web index: 10+ Petabytes (10,000,000 Gigabytes)

Time to read 1 Terabyte from disk: 3 hours (100 Megabytes/second)

Typical hardware for big data applications:

- Consumer-grade hard disks and processors
- Independent computers are stored in racks
- Concerns: networking, heat, power, monitoring
- When using many computers, some will fail!

Examples from Anthony Joseph
Apache Spark
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data.

- A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs.
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data
A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
Supports common UNIX operations: sort, distinct (uniq in UNIX), count, pipe
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data
• A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
• Supports common UNIX operations: sort, distinct (uniq in UNIX), count, pipe
• Supports common sequence operations: map, filter, reduce
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data
• A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
• Supports common UNIX operations: sort, distinct (uniq in UNIX), count, pipe
• Supports common sequence operations: map, filter, reduce
• Supports common database operations: join, union, intersection
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data
• A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
• Supports common UNIX operations: sort, distinct (uniq in UNIX), count, pipe
• Supports common sequence operations: map, filter, reduce
• Supports common database operations: join, union, intersection

All of these operations can be performed on RDDs that are partitioned across machines
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data
• A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
• Supports common UNIX operations: sort, distinct (uniq in UNIX), count, pipe
• Supports common sequence operations: map, filter, reduce
• Supports common database operations: join, union, intersection

All of these operations can be performed on RDDs that are partitioned across machines

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes,
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, nought could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Apache Spark

Apache Spark is a data processing system that provides a simple interface for large data
- A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
- Supports common UNIX operations: sort, distinct (uniq in UNIX), count, pipe
- Supports common sequence operations: map, filter, reduce
- Supports common database operations: join, union, intersection

All of these operations can be performed on RDDs that are partitioned across machines

King Lear

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Apache Spark Execution Model

Processing is defined centrally but executed remotely
Apache Spark Execution Model

Processing is defined centrally but executed remotely

- A Resilient Distributed Dataset (RDD) is distributed in partitions to worker nodes

King Lear

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes,
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Apache Spark Execution Model

Processing is defined centrally but executed remotely

- A Resilient Distributed Dataset (RDD) is distributed in partitions to worker nodes
- A driver program defines transformations and actions on an RDD

King Lear

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean,
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Apache Spark Execution Model

Processing is defined centrally but executed remotely
- A Resilient Distributed Dataset (RDD) is distributed in partitions to worker nodes
- A driver program defines transformations and actions on an RDD
- A cluster manager assigns tasks to individual worker nodes to carry them out
Apache Spark Execution Model

Processing is defined centrally but executed remotely

- A Resilient Distributed Dataset (RDD) is distributed in partitions to worker nodes
- A driver program defines transformations and actions on an RDD
- A cluster manager assigns tasks to individual worker nodes to carry them out
- Worker nodes perform computation & communicate values to each other

King Lear

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean,
From forth the fatal loins of these two foes,
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Apache Spark Execution Model

Processing is defined centrally but executed remotely

- A Resilient Distributed Dataset (RDD) is distributed in partitions to worker nodes
- A driver program defines transformations and actions on an RDD
- A cluster manager assigns tasks to individual worker nodes to carry them out
- Worker nodes perform computation & communicate values to each other
- Final results are communicated back to the driver program

King Lear

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean,
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Apache Spark Execution Model

Processing is defined centrally but executed remotely

- A Resilient Distributed Dataset (RDD) is distributed in partitions to worker nodes
- A driver program defines transformations and actions on an RDD
- A cluster manager assigns tasks to individual worker nodes to carry them out
- Worker nodes perform computation & communicate values to each other
- Final results are communicated back to the driver program

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean,
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which but their children's end, nought could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
King Lear

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean;
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.

Romeo & Juliet

The Last Words of Shakespeare (Demo)
Apache Spark Interface

The Last Words of Shakespeare (Demo)

A SparkContext gives access to the cluster manager

King Lear

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
A SparkContext gives access to the cluster manager

```
>>> sc
<pyspark.context.SparkContext ...>
```
Apache Spark Interface

The Last Words of Shakespeare (Demo)

A SparkContext gives access to the cluster manager

A RDD can be constructed from the lines of a text file

```python
>>> sc
< pyspark.context.SparkContext ...
```
Apache Spark Interface

The Last Words of Shakespeare (Demo)

A SparkContext gives access to the cluster manager

A RDD can be constructed from the lines of a text file

```python
>>> sc
cypspark.context.SparkContext ...

>>> x = sc.textFile('shakespeare.txt')
```

King Lear

```
Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, naught could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
```
Apache Spark Interface

The Last Words of Shakespeare (Demo)

A **SparkContext** gives access to the cluster manager

A RDD can be constructed from the lines of a text file

The **sortBy** transformation and **take** action are methods

```python
>>> sc
<pyspark.context.SparkContext ...>
>>> x = sc.textFile('shakespeare.txt')
```
Apache Spark Interface

The Last Words of Shakespeare (Demo)

A **SparkContext** gives access to the cluster manager

A RDD can be constructed from the lines of a text file

The **sortBy** transformation and **take** action are methods

```python
>>> sc
<pyspark.context.SparkContext ...>
>>> x = sc.textFile('shakespeare.txt')
>>> x.sortBy(lambda s: s, False).take(2)
['you shall ...', 'yet a ...']
```

King Lear

Romeo & Juliet

Two households, both alike in dignity,
In fair Verona, where we lay our scene,
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife.
The fearful passage of their death-mark'd love,
And the continuance of their parents' rage,
Which, but their children's end, nought could remove,
Is now the two hours' traffic of our stage;
The which if you with patient ears attend,
What here shall miss, our toil shall strive to mend.
Apache Spark Interface

The Last Words of Shakespeare (Demo)

A SparkContext gives access to the cluster manager

A RDD can be constructed from the lines of a text file

The sortBy transformation and take action are methods

(Demo)

```python
>>> sc
<pyspark.context.SparkContext ...>

>>> x = sc.textFile('shakespeare.txt')

>>> x.sortBy(lambda s: s, False).take(2)
['you shall ...', 'yet , a ...']
```

King Lear

Romeo & Juliet

Two households , both alike in dignity ,
In fair Verona , where we lay our scene ,
From ancient grudge break to new mutiny ,
Where civil blood makes civil hands unclean ,
From forth the fatal loins of these two foes
A pair of star-cross'd lovers take their life ;
Whose misadventur'd piteous overthrows
Do with their death bury their parents' strife .
The fearful passage of their death-mark'd love ,
And the continuance of their parents' rage ,
Which , but their children's end , naught could remove ,
Is now the two hours' traffic of our stage ;
The which if you with patient ears attend ,
What here shall miss , our toil shall strive to mend .
```
What Does Apache Spark Provide?
What Does Apache Spark Provide?

Fault tolerance: A machine or hard drive might crash
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash

- The cluster manager automatically re-runs failed tasks

**Speed:** Some machine might be slow because it's overloaded
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks

**Speed:** Some machine might be slow because it's overloaded
- The cluster manager can run multiple copies of a task and keep the result of the one that finishes first
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks

**Speed:** Some machine might be slow because it's overloaded
- The cluster manager can run multiple copies of a task and keep the result of the one that finishes first

**Network locality:** Data transfer is expensive
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks

**Speed:** Some machine might be slow because it's overloaded
- The cluster manager can run multiple copies of a task and keep the result of the one that finishes first

**Network locality:** Data transfer is expensive
- The cluster manager tries to schedule computation on the machines that hold the data to be processed
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks

**Speed:** Some machine might be slow because it's overloaded
- The cluster manager can run multiple copies of a task and keep the result of the one that finishes first

**Network locality:** Data transfer is expensive
- The cluster manager tries to schedule computation on the machines that hold the data to be processed

**Monitoring:** Will my job finish before dinner?!!
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks

**Speed:** Some machine might be slow because it's overloaded
- The cluster manager can run multiple copies of a task and keep the result of the one that finishes first

**Network locality:** Data transfer is expensive
- The cluster manager tries to schedule computation on the machines that hold the data to be processed

**Monitoring:** Will my job finish before dinner?!?
- The cluster manager provides a web-based interface describing jobs
What Does Apache Spark Provide?

**Fault tolerance:** A machine or hard drive might crash
- The cluster manager automatically re-runs failed tasks

**Speed:** Some machine might be slow because it's overloaded
- The cluster manager can run multiple copies of a task and keep the result of the one that finishes first

**Network locality:** Data transfer is expensive
- The cluster manager tries to schedule computation on the machines that hold the data to be processed

**Monitoring:** Will my job finish before dinner?!?
- The cluster manager provides a web-based interface describing jobs
MapReduce
MapReduce Applications
MapReduce Applications

An important early distributed processing system was MapReduce, developed at Google
MapReduce Applications

An important early distributed processing system was MapReduce, developed at Google. Generic application structure that happened to capture many common data processing tasks.
MapReduce Applications

An important early distributed processing system was MapReduce, developed at Google. Generic application structure that happened to capture many common data processing tasks.

Step 1: Each element in an input collection produces zero or more key-value pairs (map)
MapReduce Applications

An important early distributed processing system was MapReduce, developed at Google.

Generic application structure that happened to capture many common data processing tasks:

• Step 1: Each element in an input collection produces zero or more key-value pairs (map)
• Step 2: All key-value pairs that share a key are aggregated together (shuffle)
MapReduce Applications

An important early distributed processing system was MapReduce, developed at Google.

Generic application structure that happened to capture many common data processing tasks:

- **Step 1:** Each element in an input collection produces zero or more key-value pairs (map)
- **Step 2:** All key-value pairs that share a key are aggregated together (shuffle)
- **Step 3:** The values for a key are processed as a sequence (reduce)
MapReduce Applications

An important early distributed processing system was MapReduce, developed at Google.

Generic application structure that happened to capture many common data processing tasks:

- Step 1: Each element in an input collection produces zero or more key-value pairs (map).
- Step 2: All key-value pairs that share a key are aggregated together (shuffle).
- Step 3: The values for a key are processed as a sequence (reduce).

Early applications: indexing web pages, training language models, & computing PageRank.
MapReduce Evaluation Model
MapReduce Evaluation Model

**Map phase**: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs
MapReduce Evaluation Model

**Map phase**: Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper yields zero or more key-value pairs for each input
**MapReduce Evaluation Model**

**Map phase:** Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper yields zero or more key-value pairs for each input

Google MapReduce

Is a Big Data framework

For batch processing
MapReduce Evaluation Model

**Map phase:** Apply a *mapper* function to all inputs, emitting intermediate key–value pairs

- The mapper yields zero or more key–value pairs for each input

---

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

**Map phase:** Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper yields zero or more key-value pairs for each input

![Diagram showing mapper function applied to inputs](image)
**MapReduce Evaluation Model**

**Map phase:** Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper yields zero or more key-value pairs for each input

---

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs
• The mapper yields zero or more key-value pairs for each input
MapReduce Evaluation Model

**Map phase:** Apply a *mapper* function to all inputs, emitting intermediate key-value pairs
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing
MapReduce Evaluation Model

**Map phase:** Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

```
mapper
```

```
o: 2
a: 1
u: 1
e: 3
i: 1
```

```
a: 1
o: 2
e: 1
i: 1
```
MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key
MapReduce Evaluation Model

**Map phase**: Apply a *mapper* function to all inputs, emitting intermediate key–value pairs
- The mapper yields zero or more key–value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

**Reduce phase**: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key
- All key–value pairs with the same key are processed together
MapReduce Evaluation Model

**Map phase:** Apply a *mapper* function to all inputs, emitting intermediate key-value pairs

- The mapper yields zero or more key-value pairs for each input

---

Google MapReduce
Is a Big Data framework
For batch processing

---

**Reduce phase:** For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- All key-value pairs with the same key are processed together
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- All key–value pairs with the same key are processed together
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key

• All key-value pairs with the same key are processed together
• The reducer yields zero or more values, each associated with that intermediate key

```plaintext
a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...```
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key
• All key-value pairs with the same key are processed together
• The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key

• All key-value pairs with the same key are processed together
• The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

• All key-value pairs with the same key are processed together
• The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a reducer function to accumulate all values associated with that key

• All key-value pairs with the same key are processed together
• The reducer yields zero or more values, each associated with that intermediate key
MapReduce Evaluation Model

Google MapReduce
Is a Big Data framework
For batch processing

Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- All key-value pairs with the same key are processed together
- The reducer yields zero or more values, each associated with that intermediate key
MapReduce Applications on Apache Spark
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

dataflatMap(fn)
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

```python
data.flatMap(fn)
```

```python
data.reduceByKey(fn)
```
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

Call Expression

```python
data.flatMap(fn)
```

```python
data.reduceByKey(fn)
```
MapReduce Applications on Apache Spark

Key–value pairs are just two–element Python tuples

Call Expression Data

data.flatMap(fn)

data.reduceByKey(fn)
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

Call Expression Data fn Input

dataflatMap(fn)

data.reduceByKey(fn)
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

Call Expression	Data	fn Input	fn Output

```python
data.flatMap(fn)
```

data.reduceByKey(fn)
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data.flatMap(fn)</code></td>
<td>Values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>data.reduceByKey(fn)</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataflatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td></td>
</tr>
</tbody>
</table>

data.reduceByKey(fn)
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data.flatMap(fn)</code></td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td><code>data.reduceByKey(fn)</code></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

`flatMap` function is used to apply a function to each value in a collection, returning a new collection with the results. `reduceByKey` function is used to reduce key-value pairs by applying a combiner function to the values associated with each key, returning a new collection with only the key-value pairs.

In Spark, these operations are optimized for distributed computing, allowing for efficient processing of large datasets.
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data.flatMap(fn)</code></td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td><code>data.reduceByKey(fn)</code></td>
<td>Key-value pairs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td>Key-value pairs</td>
<td>Two values</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data.flatMap(fn)</code></td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td><code>data.reduceByKey(fn)</code></td>
<td>Key-value pairs</td>
<td>Two values</td>
<td>One value</td>
<td></td>
</tr>
</tbody>
</table>

Example:

- **flatMap** function: Takes a function `fn` as input and applies it to each value in the input data. The result is a collection of zero or more key-value pairs, depending on the output of `fn`.

- **reduceByKey** function: Takes a function `fn` as input and applies it to each key and all values associated with that key. The result is a collection of key-value pairs, where each key has one value associated with it.
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>data.flatMap(fn)</td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td>data.reduceByKey(fn)</td>
<td>Key-value pairs</td>
<td>Two values</td>
<td>One value</td>
<td>One key-value pair for each unique key</td>
</tr>
</tbody>
</table>
MapReduce Applications on Apache Spark

Key-value pairs are just two-element Python tuples

<table>
<thead>
<tr>
<th>Call Expression</th>
<th>Data</th>
<th>fn Input</th>
<th>fn Output</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data.flatMap(fn)</code></td>
<td>Values</td>
<td>One value</td>
<td>Zero or more key-value pairs</td>
<td>All key-value pairs returned by calls to fn</td>
</tr>
<tr>
<td><code>data.reduceByKey(fn)</code></td>
<td>Key-value pairs</td>
<td>Two values</td>
<td>One value</td>
<td>One key-value pair for each unique key</td>
</tr>
</tbody>
</table>

(Demo)