
61A Extra Lecture 5 Announcements

Data Representations

def	box(contents):	
				def	get():	
								return	contents	
				def	put(value):	
								nonlocal	contents	
								contents	=	value	
				return	get,	put	
					
get,	put	=	box('Hello')	
before	=	get()	
put('Goodbye')	
after	=	get()

Functions with Shared Local State

4Interactive Diagram

def	pair(x,	y):	
				def	dispatch(m):	
								if	m	==	'first':	
												return	x	
								elif	m	==	'second':	
												return	y	
				return	dispatch

This
function

represents
the pair
(x, y)

Pairs Implemented as Functions

Constructor is a higher-
order function

5

>>>	p	=	pair(3,	pair(4,	5))	
>>>	p('first')	
3	
>>>	p('second')('first')	
4	
>>>	p('second')('second')	
5

3 4 5

(Demo)

Linked Lists (Sneak Preview)

• An empty list is called "nil" and represented as None

• A non-empty list is represented as a pair
• The first element of the pair is the first element of the list
• The second element of the pair is the rest of the list

6

nil	=	None	
def	list_len(s):	
				if	s	is	nil:	
								return	0	
				else:	
								return	1	+	list_len(s('second'))

def	append(s,	x):	
				if	s	is	nil:	
								return	pair(x,	nil)	
				else:	
								first,	rest	=	s('first'),	s('second')	
								return	pair(first,	append(rest,	x))

(Demo)

3 4 5

An Inefficient Dictionary Implementation

•A list of key-value pairs can be used to implement dictionary behavior

7

(Demo)

				>>>	d	=	dict_dispatch()	
				>>>	d('set')('I',	1)	
				>>>	d('set')('V',	5)	
				>>>	d('set')('X',	10)

'I' 1 'V' 5 'X' 10

Dispatch Dictionaries

Dispatch Dictionaries

Enumerating different messages in a conditional statement isn't very convenient:
§ Equality tests are repetitive
§ We can't add new messages without re-writing the dispatch function

A dispatch dictionary has messages as keys and functions (or data objects) as values

Dictionaries handle the message look-up logic; we can concentrate on implementing behavior

9

def	box_dispatch(contents):	
				def	dispatch(m):	
								if	m	==	'contents':	
												return	contents	
								if	m	==	'put':	
												def	put(value):	
																nonlocal	contents	
																contents	=	value	
												return	put	
				return	dispatch	

def	box_dict(contents):	
				def	put(value):	
								d['contents']	=	value	
				d	=	{'contents':	contents,	'put':	put}	
				return	d

(Demo)

Constraint Networks

Solving for Variables in an Equation

11

Algebraic equations are declarative: They describe a relation among different quantities

 Python functions are procedural: They describe how to compute a result from a set
of input arguments

Constraint programming:
§ We define the relationship between quantities
§ We provide values for the "known" quantities
§ The system computes values for the "unknown" quantities

Challenge: We want a general means of combination.

a + b = c

a = c - b
b = c - a

p * v = n * k * t

9 * c = 5 * (f - 32)

Boltzmann’s constant

A Constraint Network for Temperature Conversion

12

a

b

c*
a

b

c *

a

b

c+

celsius

fahrenheit

9 5 32

u

v

x yw

9 * celsius = 5 * (fahrenheit - 32)

Combination idea: All intermediate quantities have values too.

This quantity
relates

directly to
fahrenheit

This quantity
relates

directly to
celsius

u
u v Both sides of the

equation are equal:
they must be

the same quantity

(Demo)

