61A Extra Lecture 9

Announcements

Pixels
(Demo)

Ray Tracing

Ray Tracing

A technique for displaying a 3 D scene on a 2 D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3 D scene on a 2 D screen by tracing a path through every pixel

Dramatization:

Ray Tracing

A technique for displaying a 3 D scene on a 2 D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3 D scene on a 2 D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3 D scene on a 2 D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3D scene on a 2D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3D scene on a 2D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3D scene on a 2D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3D scene on a 2D screen by tracing a path through every pixel

Ray Tracing

A technique for displaying a 3D scene on a 2D screen by tracing a path through every pixel

Distance from a Source to a Sphere

Distance from a Source to a Sphere

$$
\begin{aligned}
r^{2} & =\|\mathbf{s}-\mathbf{c}+t \mathbf{d}\|^{2} \\
0 & =\|t \mathbf{d}+\mathbf{v}\|^{2}-r^{2} \\
0 & =t^{2}\|\mathbf{d}\|^{2}+2 t(\mathbf{v} \cdot \mathbf{d})+\|\mathbf{v}\|^{2}-r^{2}
\end{aligned}
$$

Distance from a Source to a Sphere

$$
\begin{aligned}
& r^{2}=\|\mathbf{C}+t \mathbf{d}\|^{2} \\
& 0=\|t \mathbf{d}+\mathbf{v}\|^{2}-r^{2} \\
& 0=t^{2}\|\mathbf{d}\|^{2}+2 t(\mathbf{v} \cdot \mathbf{d})+\|\mathbf{v}\|^{2}-r^{2} \\
&(0,0,0)
\end{aligned}
$$

Distance from a Source to a Sphere

$$
\begin{aligned}
& r^{2}=\|\mathbf{S}-\mathbf{C}+t \mathbf{d}\|^{2} \\
& 0=\|t \mathbf{d}+\mathbf{v}\|^{2}-r^{2} \\
& 0=t^{2}\|\mathbf{d}\|^{2}+2 t(\mathbf{V} \cdot \mathbf{d})+\|\mathbf{v}\|^{2}-r^{2}
\end{aligned}
$$

Distance from a Source to a Sphere

$$
\begin{aligned}
& r^{2}=\|\mathbf{S}-\mathbf{c}+t \mathbf{d}\|^{2} \\
& 0=\|t \mathbf{d}+\mathbf{v}\|^{2}-r^{2} \\
& 0=t^{2}\|\mathbf{d}\|^{2}+2 t(\mathbf{V} \cdot \mathbf{d})+\|\mathbf{v}\|^{2}-r^{2} \\
& \text { b }
\end{aligned}
$$

Multiple Spheres

Multiple Spheres

Compute distance to each sphere

Multiple Spheres

Compute distance to each sphere

Pixel color from the closest sphere

Multiple Spheres

Compute distance to each sphere

Pixel color from the closest sphere

Reflections

Reflections

Reflections

Color is a mixture of the sphere \& reflection

Reflections

Color is a mixture of the sphere \& reflection

The source of a reflection is the surface of the sphere, instead of the original camera

Reflections

Color is a mixture of the sphere \& reflection

The source of a reflection is the surface of the sphere, instead of the original camera

