

In Logic, a relation i	s not a call expression.	
Scheme: the expression	n (abs –3) calls abs on –3. It	t returns 3.
• Logic: (abs -3 3) as	serts that <i>abs</i> of -3 is 3.	
To assert that 1 + 2 =	3, we use a relation: (add 1	2 3)
We can ask the Logic i	nterpreter to complete relatio	ns based on known facts.
	(add ? 2 3)	1
	(add 1 <u>?</u> 3)	2
	(add 1 2 <u>?</u>)	3
	(<u>?</u> 1 2 3)	add

The Logic in to find sati	terpreter perfo sfying assignme	rms a search in the space of relations for each query nts.
logic> (quer	(ancestor ?a l	nerbert))
Success!		
a: fillmore∢		
a: eisenhowe	-	
logic> (fact	(parent delano	herbert))
logic> (fact	(parent fillmo	re delano))
logic> (fact	(ancestor ?a ?)	y) (parent ?a ?y))
logic> (fact	(ancestor ?a ?)	<pre>/) (parent ?a ?z) (ancestor ?z ?y))</pre>
(parent dela	no herbert)	; (1), a simple fact
(ancestor de	lano herbert)	; (2), from (1) and the 1st ancestor fact
(parent fill	nore delano)	; (3), a simple fact
(ancestor fi	llmore herbert)	: (4), from (2), (3), & the 2nd ancestor fact

Search	Searching for ProofsThe Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true. $(fact (app (1 ? X ? X)))$ $(fact (app (7a . ?r) ?y (7a . ?z)))$ $(gap ?r ?y ?z .))$ $(qap ?left (c d) (e b c d)))(app ?left (c d) (e b c d))(fact (2p ?left (c d) (e b c d)))(fact (app (1 ? X ?X)))(fact (app (7a . ?r) ?y (7a . ?z)))(qapp ?left (c d) (e b c d)))(app ?left (c d) (e b c d))(fact (2p ?left (c d) (e b c d)))(app (e . ?r) (c d) (e b c d))(app ?ra . ?r) ?y (7a . ?z_2))conclusion <- hypothesis(app ?ra . ?r2)(app (ra . ?r2) ?y2 (?a2 . ?a2)))(app (b . ?r2) (c d) (b c d))(app ?ra . ?r2) ?y2 (?a2 . ?a2))conclusion <- hypothesis(app ?r2 (c d) (c d))(app (b . ?r2) (c d) (b c d))(app ?r2 (c d) (c d))(fact (0) (c d) (c d))(re t)(app (1) ?x ?x)?left: (e . (b)) r (e b)?r: (b . ()) r (b)$
--------	--

Depth-First Search	
The space of facts is searched exhaustively, starting from the query and following a $depth-first$ exploration order.	
Depth-first search: Each proof approach is explored exhaustively before the next.	
<pre>def search(clauses, env): for fact in facts: env_head = an environment extending env if unify(conclusion of fact, first clause, env_head): for env_rule in search(hypotheses of fact, env_head): for result in search(rest of clauses, env_rule): yield each successful result</pre>	Addition
·Limiting depth of the search avoids infinite loops.	
·Each time a fact is used, its variables are renamed.	(Demo)
·Bindings are stored in separate frames to allow backtracking.	
(Demo)	
77	