
Logic Programming Announcements

The Logic Language

The Logic Language

The Logic language was invented for Structure and Interpretation of Computer Programs

• Based on Prolog (1972)

• Expressions are facts or queries, which contain relations

• Expressions and relations are Scheme lists

• For example, (likes john dogs) is a relation

!4

Simple Facts

A simple fact expression in the Logic language declares a relation to be true

Let's say I want to track the heredity of a pack of dogs

Language Syntax:

• A relation is a Scheme list

• A fact expression is a Scheme list of relations

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

logic> (fact (parent fillmore grover))

logic> (fact (parent eisenhower fillmore))

!5

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

!6

(add ? 2 3)

(add 1 ? 3)

(add 1 2 ?)

(? 1 2 3)

1

2

3

add

Queries

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))
Success!
puppy: barack
puppy: clinton

!8

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Each line is an assignment
of variables to values (Demo)

Compound Facts and Queries

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

logic> (query (child ?kid fillmore))
Success!
kid: abraham
kid: delano
kid: grover

!10

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

logic> (query (child ?y ?x)
 (child ?x eisenhower))
Success!
y: abraham x: fillmore
y: delano x: fillmore
y: grover x: fillmore

!11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack)
 (ancestor ?a herbert))
Success!
a: fillmore
a: eisenhower

!13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))
logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

(parent delano herbert) ; (1), a simple fact

(ancestor delano herbert) ; (2), from (1) and the 1st ancestor fact

(parent fillmore delano) ; (3), a simple fact

(ancestor fillmore herbert) ; (4), from (2), (3), & the 2nd ancestor fact

!14

Hierarchical Facts

Hierarchical Facts

Relations can contain relations in addition to symbols.

logic> (fact (dog (name abraham) (fur long)))
logic> (fact (dog (name barack) (fur short)))
logic> (fact (dog (name clinton) (fur long)))
logic> (fact (dog (name delano) (fur long)))
logic> (fact (dog (name eisenhower) (fur short)))
logic> (fact (dog (name fillmore) (fur curly)))
logic> (fact (dog (name grover) (fur short)))
logic> (fact (dog (name herbert) (fur curly)))

Variables can refer to symbols or whole relations.

logic> (query (dog (name clinton) (fur ?type)))
Success!
type: long

logic> (query (dog (name clinton) ?stats))
Success!
stats: (fur long)

!16

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same fur?

logic> (query (dog (name ?x) (fur ?fur))
 (ancestor ?y ?x)
 (dog (name ?y) (fur ?fur)))
Success!
x: barack fur: short y: eisenhower
x: clinton fur: long y: abraham
x: grover fur: short y: eisenhower
x: herbert fur: curly y: fillmore

!17

E

F

A D G

B C H

Appending Lists

(Demo)

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z)) 
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d))) 
Success! 
left: (e b)

Conclusion

Hypothesis

Simple fact: Conclusion

!19

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?z?a

(?a . ?z)

?y?r ?z

(Demo)

The interpreter lists all bindings that it can find to satisfy the query.

Unification

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)
True, {x: (a b)}

((a b) c (a b))

((a ?y) ?z (a b))
True, {y: b, z: c}

((a b) c (a b))

(?x ?x ?x)
False

!21

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

!22

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

x: (a b){ }

 (a b)

 (a b)

Lookup

 c
 (a b)

Lookup

Success! Failure.

Symbols/relations
without variables
only unify if they

are the same

Unifying Variables

Two relations that contain variables can be unified as well.

!23

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x') (a ?y c) lookup('?y') b ground('?x') (a b c)

Implementing Unification

!24

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:

 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

x: (a b){ }

 (a b)

 (a b)

Lookup

env:

Search

Searching for Proofs

!26

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z)) 
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left: (e b)(b))
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r: (b)(b . ())

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result

• Limiting depth of the search avoids infinite loops.

• Each time a fact is used, its variables are renamed.

• Bindings are stored in separate frames to allow backtracking.

Environment now contains
new unifying bindings

!27

(Demo)

Addition

(Demo)

