Lecture #20: Recursive Processes, Memoization, Tree Structures

Varieties of Recursive Processes

- We can characterize (potentially) recursive functions according to the patterns in which data flows through them.
- The simplest case is a non-recursive function call, which does something (call it h) to its input data and returns the result:
  ```python
def func0(x):
    return h(x)
```
- "Operations" include any processing that does not cause further recursion.
- This is a leaf call.

Iterative (Tail-Recursive) Processes

- Tail-recursive processes do no further processing after a recursive call
  ```python
def func1(x):
    if P(x):
      return h1(x)
    else:
      return func1(h2(x))
```
- Once we make a recursive call, can forget about the caller.
- Constant space needed for administrative overhead (in principle)
- Time required (number of operations) proportional to call depth.

Linear Recursions

- Linear recursions do one recursive call and then additional processing
  ```python
def func2(x):
    if P(x):
      return h1(x)
    else:
      return func2(h2(x))
```
- Must keep track of pending calls, because there is more to do for each.
- Space proportional to depth of calls needed for administrative overhead.
- Time required proportional to call depth.

Tree (General) Recursion

- Tree recursions do more than one recursive call in each function execution.
  ```python
def func3(x):
    if P1(x):
      return h1(x)
    else:
      y = func3(h2(x))
      if P2(x):
        z = func3(h4(x, y))
        return h5(x, y, z)
```
- Again, must keep track of pending calls (one per level).
- So, space proportional to depth of calls.
- But time required may be exponential in call depth.

Avoiding Redundant Computation

- In the (tree-recursive) maze example, a naive search could take us in circles, resulting in infinite time.
- Hence the visited parameter in the search function.
- This parameter is intended to catch redundant computation, in which reprocessing certain arguments cannot produce anything new.
- We can apply this idea to cases of finite but redundant computation.
- For example, in count_change, we often revisit the same subproblem:
 - E.g., Consider making change for 87 cents.
 - When choose to use one half-dollar piece, we have the same subproblem as when we choose to use no half-dollars and two quarters.
- Saw an approach in Lecture #16: memoization.
Memoizing

- Idea is to keep around a table (“memo table”) of previously computed values.
- Consult the table before using the full computation.
- Example: count_change

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = {} # Local definition hides outer one so we can cut-and-paste
    # from the unmemoized (red) solution.
    def count_change(amount, coins):
        if (amount, coins) not in memo_table:
            memo_table[amount, coins] = full_count_change(amount, coins)
            return memo_table[amount, coins]
    def full_count_change(amount, coins):
        return count_change(amount,coins)
        original_solution goes here verbatim
    return count_change(amount,coins)
```

- Question: how could we test for infinite recursion?

Order of Calls

- Going one step further, we can analyze the order in which our program ends up filling in the table.
- So consider adding some tracing to our memoized count_change program:

```python
def full_count_change(amount, coins):
    if amount >= coins[0]:
        return full_count_change(amount-coins[0], coins) + count_change(amount-coins[0], coins)
    return count_change(amount, coin[1:])
```

Result of Tracing

- Consider count_change(57) (returns only):

```
full_count_change(57, 1) -> 57
... full_count_change(17, 1) -> 2
... full_count_change(1, 1) -> 1
full_count_change(0, 1) -> 1
full_count_change(57, (10, 5, 1)) -> 2
full_count_change(7, (5, 1)) -> 2
... full_count_change(57, (5, 1)) -> 12
full_count_change(7, (10, 5, 1)) -> 2
full_count_change(17, (5, 5, 1)) -> 6
... full_count_change(32, (10, 5, 1)) -> 16
full_count_change(7, (25, 10, 5, 1)) -> 2
full_count_change(32, (25, 10, 5, 1)) -> 18
full_count_change(57, (25, 10, 5, 1)) -> 60
full_count_change(7, (50, 25, 10, 5, 1)) -> 2
full_count_change(7, (50, 25, 10, 5, 1)) -> 62
```

Dynamic Programming

- Now rewrite count_change to make the order of calls explicit, so that we needn’t check to see if a value is memoized.
- Technique is called dynamic programming (for some reason).
- We start with the base cases, and work backwards.

```python
for a in range(0, amount+1):
    for k in range(1, len(coins) + 1):
        memo_table[a][k] = full_count_change(a, coins[-k:])
```

New Topic: Tree-Structured Data

- 1 Linear-recursive and tail-recursive functions make a single recursive call in the function body. Tree-recursive functions can make more.
- Linear recursive data structures (think rlists) have single embedded recursive references to data of the same type, and usually correspond to linear- or tail-recursive programs.
- To model some things, we need multiple recursive references in objects.
- In the absence of circularity (paths from an object eventually leading back to it), such objects form data structures called trees:
 - The objects themselves are called nodes or vertices.
 - Tree objects that have no (non-null) pointers to other tree objects are called leaves.
 - Those that do have such pointers are called inner nodes, and the objects they point to are children (or subtrees or (uncommonly) branches).
 - A collection of disjoint trees is called a forest.
Example: Expressions

- An expression (in Python or other languages) typically has a recursive structure. It is either
 - A literal (like 5) or symbol (like x)—a leaf—or
 - A compound expression consisting of an operator and zero or more operands, each of which is itself an expression.
- For example, the expression \(x + (y+2)*(z+10)\) can be thought of as a tree (what happened to the parentheses?):

Expressions as Tuples or Lists

- We can represent the abstract structure of the last slide with Python objects we've already seen:

Class Representation

- ...or we can introduce a Python class:

```python
class ExprTree:
    def __init__(self, operator):
        self.__operator = operator
    @property
    def operator(self):
        return self.__operator
    @property
    def left(self):
        raise NotImplementedError
    @property
    def right(self):
        raise NotImplementedError

class Leaf(ExprTree):

class Inner(ExprTree):
    def __init__(self, operator, left, right):
        ExprTree.__init__(self, operator)
        self.__left = left;
        self.__right = right
    @property
    def left(self):
        return self.__left
    @property
    def right(self):
        return self.__right

Inner("*", Leaf("x"),
    Inner("*", Leaf("y")
    Inner("*", Leaf("z"), Leaf("10")))
```