Lecture #20: Recursive Processes, Memoization, Tree Structures
Varieties of Recursive Processes

- We can characterize (potentially) recursive functions according to the patterns in which data flows through them.
- The simplest case is a non-recursive function call, which does something (call it \(h \)) to its input data and returns the result:

  ```python
def func0(x):
    return h(x)
```

- "Operations" include any processing that does not cause further recursion.
- This is a *leaf call.*
Iterative (Tail-Recursive) Processes

- Tail-recursive processes do no further processing after a recursive call

```python
def func1(x):
    if P(x):
        return h1(x)
    else:
        return func1(h2(x))
```

- Once we make a recursive call, can forget about the caller.
- Constant space needed for administrative overhead (in principle)
- Time required (number of operations) proportional to call depth.
Linear Recursions

• Linear recursions do one recursive call and then additional processing

```python
def func2(x):
    if P(x):
        return h1(x)
    else:
        return h3((func2(h2(x)))
```

• Must keep track of pending calls, because there is more to do for each.

• Space proportional to depth of calls needed for administrative overhead.

• Time required proportional to call depth.
Tree (General) Recursion

• Tree recursions do more than one recursive call in each function execution.

```python
def func3(x):
    if P1(x):
        return h1(x)
    else:
        y = func3(h2(x))
        if P2(x):
            return h3(x, y)
        z = func3(h4(x, y))
        return h5(x, y, z)
```

• Again, must keep track of pending calls (one per level).

• So, space proportional to depth of calls.

• But time required may be exponential in call depth.
Avoiding Redundant Computation

• In the (tree-recursive) maze example, a naive search could take us in circles, resulting in infinite time.

• Hence the *visited* parameter in the *search* function.

• This parameter is intended to catch redundant computation, in which reprocessing certain arguments cannot produce anything new.

• We can apply this idea to cases of finite but redundant computation.

• For example, in *count_change*, we often revisit the same subproblem:
 - E.g., Consider making change for 87 cents.
 - When choose to use one half-dollar piece, we have the same sub-problem as when we choose to use no half-dollars and two quarters.

• Saw an approach in Lecture #16: memoization.
Memoizing

- Idea is to keep around a table ("memo table") of previously computed values.
- Consult the table before using the full computation.
- Example: `count_change`:

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = {}
    # Local definition hides outer one so we can cut-and-paste # from the unmemoized (red) solution.
    def count_change(amount, coins):
        if (amount, coins) not in memo_table:
            memo_table[amount,coins] = full_count_change(amount, coins)
        return memo_table[amount,coins]
    def full_count_change(amount, coins):
        original solution goes here verbatim
        return count_change(amount,coins)
```

- Question: how could we test for infinite recursion?
Optimizing Memoization

• Used a dictionary to memoize `count_change`, which is highly general, but can be relatively slow.

• More often, we use arrays indexed by integers (lists in Python), but the idea is the same.

• For example, in the `count_change` program, we can index by `amount` and by the portion of `coins` that we use, which is always a slice that runs to the end.

```python
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    # memo_table[amt][k] contains the value computed for
    #   count_change(amt, coins[k:])
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    def count_change(amount, coins):
        if memo_table[amount][len(coins)] == -1:
            memo_table[amount][len(coins)] = full_count_change(amount, coins)
            return memo_table[amount][len(coins)]
        ...
Order of Calls

• Going one step further, we can analyze the order in which our program ends up filling in the table.

• So consider adding some tracing to our memoized `count_change` program:

```python
memo_table = {}
def count_change(amount, coins):
 ... full_count_change(amount, coins) ...
 return memo_table[amount,coins]
@trace
def full_count_change(amount, coins):
 if amount == 0: return 1
 elif not coins: return 0
 elif amount >= coins[0]:
 return count_change(amount, coins[1:]) \
 + count_change(amount-coins[0], coins)
 else:
 return count_change(amount, coins[1:])
 return count_change(amount,coins)
```
Result of Tracing

- Consider \texttt{count\textunderscore change(57)} (returns only):

\begin{verbatim}
full_count_change(57, ())  ->  0
full_count_change(56, ())  ->  0
...
full_count_change(1, ())   ->  0
full_count_change(0, (1,)) ->  1
full_count_change(1, (1,)) ->  1
...
full_count_change(57, (1,)) ->  1
full_count_change(2, (5, 1)) ->  1
full_count_change(7, (5, 1)) ->  2
...
full_count_change(57, (5, 1)) ->  12
full_count_change(7, (10, 5, 1)) ->  2
full_count_change(17, (10, 5, 1)) ->  6
...
full_count_change(32, (10, 5, 1)) ->  16
full_count_change(7, (25, 10, 5, 1)) ->  2
full_count_change(32, (25, 10, 5, 1)) ->  18
full_count_change(57, (25, 10, 5, 1)) ->  60
full_count_change(7, (50, 25, 10, 5, 1)) ->  2
full_count_change(57, (50, 25, 10, 5, 1)) ->  62
\end{verbatim}
Dynamic Programming

- Now rewrite `count_change` to make the order of calls explicit, so that we needn't check to see if a value is memoized.

- Technique is called *dynamic programming* (for some reason).

- We start with the base cases, and work backwards.

\[
def \text{count} \_\text{change}(\text{amount}, \text{coins} = (50, 25, 10, 5, 1)):\n\text{memo} \_\text{table} = [ \ [-1] \ * \ (\text{len(coins)}+1) \ \text{for} \ \text{i in range(amount+1)} \ ]\n\text{def} \ \text{count} \_\text{change}(\text{amount}, \text{coins}):\n\ \ \ \ \ \text{return} \ \text{memo} \_\text{table}[\text{amount}][\text{len(coins)}]\n\text{def} \ \text{full} \_\text{count} \_\text{change}(\text{amount}, \text{coins}):\n\ \ \ \ \ \text{# How often is this called?}\n\ \ \ \ \ \text{... # (calls count_change for recursive results)}\n\]

\[
\text{for} \ \text{a in range(0, amount+1)}:\n\ \ \ \ \ \text{memo} \_\text{table}[\text{a}][0] = \text{full} \_\text{count} \_\text{change}(\text{a}, \text{()})\n\text{for} \ \text{k in range(1, \text{len(coins)} + 1)}:\n\ \ \ \ \ \text{for} \ \text{a in range(1, amount+1)}:\n\ \ \ \ \ \ \ \ \ \ \text{memo} \_\text{table}[\text{a}][\text{k}] = \text{full} \_\text{count} \_\text{change}(\text{a}, \text{coins}[-\text{k}:])\n\ \ \ \ \ \text{return} \ \text{count} \_\text{change}(\text{amount}, \text{coins})\n\]
New Topic: Tree-Structured Data

• 1 Linear-recursive and tail-recursive functions make a single recursive call in the function body. Tree-recursive functions can make more.

• Linear recursive data structures (think rlists) have single embedded recursive references to data of the same type, and usually correspond to linear- or tail-recursive programs.

• To model some things, we need multiple recursive references in objects.

• In the absence of circularity (paths from an object eventually leading back to it), such objects form data structures called **trees**:
  - The objects themselves are called **nodes** or **vertices**.
  - Tree objects that have no (non-null) pointers to other tree objects are called **leaves**.
  - Those that do have such pointers are called **inner nodes**, and the objects they point to are **children** (or **subtrees** or (uncommonly) **branches**).
  - A collection of disjoint trees is called a **forest**.
Example: Expressions

- An expression (in Python or other languages) typically has a recursive structure. It is either
  - A literal (like 5) or symbol (like x)—a leaf—or
  - A compound expression consisting of an operator and zero or more operands, each of which is itself an expression.
- For example, the expression \( x + (y+2)*(z+10) \) can be thought of as a tree (what happened to the parentheses?):

```
+
|
+
|
|
+
|
|
+
|
|
+
|
|
|
|

x
y 2
z 10
```
Expressions as Tuples or Lists

- We can represent the abstract structure of the last slide with Python objects we’ve already seen:

```
("+", "x", ("*", ("+", "y", "2"), ("+", "z", "10")))
```

```
+ x

*

+ y 2 + z 10
```
Class Representation

• ... or we can introduce a Python class:

```python
class ExprTree:
 def __init__(self, operator):
 self.__operator = operator

 @property
def operator(self):
 return self.__operator

 @property
def left(self):
 raise NotImplementedError

 @property
def right(self):
 raise NotImplementedError

class Leaf(ExprTree):
 pass

class Inner(ExprTree):
 def __init__(self, operator, left, right):
 ExprTree.__init__(self, operator)
 self.__left = left;
 self.__right = right

 @property
def left(self):
 return self.__left

 @property
def right(self):
 return self.__right

Inner("+", Leaf("x"),
 Inner("*", Inner("+", Leaf("y"), Leaf("2")),
 Inner("+", Leaf("z"), Leaf("10"))))
```