Complexity and Orders of Growth

- Certain problems take longer than others to solve, or require more storage space to hold intermediate results.
- We refer to the time complexity or space complexity of a problem.
- But what does it mean to say that a certain program has a particular complexity?
- What does it mean for an algorithm?
- What does it mean for a problem?

A Direct Approach

- Well, if you want to know how fast something is, you can time it.
- Python happens to make this easy:

```python
>>> def fib(n):
...     if n <= 1: return n
...     else: return fib(n-2) + fib(n-1)
...

>>> import timeit
>>> timeit.repeat('fib(10)', 'from __main__ import fib', number=5)
[0.0004911422729492188, 0.0004868507385253906, 0.0004870891571044922]
>>> timeit.repeat('fib(20)', 'from __main__ import fib', number=5)
[0.06009697914123535, 0.06010794639587402, 0.06009793281555176]
```

- timeit.repeat(Stmt, Setup, number=N) says Execute Setup (a string containing Python code), then execute Stmt (a string) N times. Repeat this process 3 times and report the time required for each repetition.

A Direct Approach, Continued

- You can also use this from the command line:

  ```bash
  ...# python3 -m timeit --setup='from fib import fib' 'fib(10)'
  10000 loops, best of 3: 97 usec per loop
  ...# python3 -m timeit --setup='from fib import fib' 'fib(20)'
  1000 loops, best of 3: 1.08 msec per loop
  ...# python3 -m timeit --setup='from fib import fib' 'fib(25)'
  10 loops, best of 3: 133 msec per loop
  ...# python3 -m timeit --setup='from fib import fib' 'fib(30)'
  10 loops, best of 3: 1.47 sec per loop
  ```

- This command automatically chooses a number of executions of fib to give a total time that is large enough for an accurate average, repeats 3 times, and reports the best time.

Strengths and Problems with Direct Approach

- Good: Gives actual times; answers question completely for given input and machine.
- Bad: Results apply only to tested inputs.
- Bad: Results apply only to particular programs and platforms.
- Bad: Cannot tell us anything about complexity of algorithm or of problem.

But Can’t We Extrapolate?

- Why not try a succession of times, and use that to figure out timing in general?

  ```bash
  ...# for t in 5 10 15 20 25 30; do
  >     echo -n "$t: "
  >     python3 -m timeit --setup='from fib import fib' "fib($t)"
  >     done
  5: 100000 loops, best of 3: 8.16 usec per loop
  10: 100000 loops, best of 3: 96.8 usec per loop
  15: 10000 loops, best of 3: 1.08 msec per loop
  20: 100 loops, best of 3: 12 msec per loop
  25: 10 loops, best of 3: 133 msec per loop
  30: 10 loops, best of 3: 1.47 sec per loop
  ```

- This looks to be exponential in t with exponent of $\approx \log_2 6$.
- But... what if the program special-cases some inputs?
- ... and this still only works for a particular program and machine.

Worst Case, Average Case

- To avoid the problem of getting results only for particular inputs, we usually ask a more general question, such as:

 - What is the worst case time to compute $f(X)$ as a function of the size of X, or
 - What is the average case time to compute $f(X)$ over all values of X (weighted by likelihood).
- Average case is hard, so we'll let other courses deal with it.
- But now we seem to have a harder problem than before: how do we get worst-case times? Doesn't that require testing all cases?
- And when we do, aren't we still sensitive to machine model, compiler, etc.?
Operation Counts and Scaling

- Instead of getting precise answers in units of physical time, we therefore settle for a proxy measure that will remain meaningful over changes in architecture or compiler.
- Choose some operation(s) of interest and count how many times they occur.
- Examples:
 - How many times does `fib` get called recursively during computation of `fib(N)`?
 - How many addition operations get performed by `fib(N)`?

You can no longer get precise times, but if the operations are well-chosen, results are proportional to actual time for different values of `N`.

Thus, we look at how computation time scales in the worst case.

Can compare programs/algorithms on the basis of which scale better.

Asymptotic Results

- Sometimes, results for "small" values are not indicative.
- E.g., suppose we have a prime-number tester that contains a look-up table of the primes up to 1,000,000,000 (about 50 million primes).
- Tests for numbers up to 1 billion will be faster than for larger numbers.
- So in general, we tend to ask about asymptotic behavior of programs: as size of input goes to infinity.

Expressing Approximation

- So, we are looking for measures of program performance that give us a sense of how computation time scales with size of input.
- And we are further interested in ignoring finite sets of special cases that a given program can compute quickly.
- Finally, precise worst-case functions can be very complicated, and the precision is generally not terribly important anyway.
- These considerations motivate the use of order notation to express approximations of execution time or space.

The Notation

- Suppose that `f` is a function of one parameter returning real numbers.
- We use the notation `O(f)` to mean "the set of all one-parameter functions whose absolute values are eventually bounded above by some multiple of `f`'s absolute value." Formally:

 \[O(f) = \{ g \mid \text{there exist } p, M \text{ such that if } x > M, |g(x)| \leq p|f(x)| \} \]

- Similarly, we have "the set of all one-parameter functions whose absolute values are eventually bounded below by some multiple of `f`'s absolute value:"

 \[\Omega(f) = \{ g \mid \text{there exist } p > 0, M \text{ such that if } x > M, |g(x)| \geq p|f(x)| \} \]

- And finally those bounded both above and below:

 \[\Theta(f) = \Omega(f) \cap O(f) \]

Illustration

- Here, `f \in O(g)` (`p = 2`, see blue line), even though `f(x) > g(x)`. Likewise, `f \in \Omega(g)` (`p = 1`, see red line), and therefore `f \in \Theta(g)`.
- That is, `f(x)` is eventually (for `x > M = 1`) no more than proportional to `g(x)` and no less than proportional to `g(x)`.

Illustration, contd.

- Here, `f' \in \Omega(g)` (`p = 0.5`), even though `g(x) > f'(x)` everywhere.
Uses of the Notation

- You may have seen $O(\cdot)$ notation in math, where we say things like
 \[f(x) \in f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + O(f'''(0)x^3) \]
- Adding or multiplying sets of functions produces sets of functions. The one above means "the set of all functions $g(x)$ such that
 \[g(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + h(x) \]
 where $h(x) \in O(f'''(0)x^3)$.
- I prefer \in to the traditional $=$, since the latter makes no formal sense.