Lecture #22: Complexity and Orders of Growth

• Certain problems take longer than others to solve, or require more storage space to hold intermediate results.

• We refer to the time complexity or space complexity of a problem.

• But what does it mean to say that a certain program has a particular complexity?

• What does it mean for an algorithm?

• What does it mean for a problem?
A Direct Approach

• Well, if you want to know how fast something is, you can time it.

• Python happens to make this easy:

>>> def fib(n):
... if n <= 1: return n
... else: return fib(n-2) + fib(n-1)
...

>>> import timeit

>>> timeit.repeat('fib(10)', 'from __main__ import fib', number=5)
[0.0004911422729492188, 0.0004868507385253906, 0.0004870891571044922]

>>> timeit.repeat('fib(20)', 'from __main__ import fib', number=5)
[0.06009697914123535, 0.06010794639587402, 0.06009793281555176]

• timeit.repeat(Stmt, Setup, number=N) says

 Execute Setup (a string containing Python code), then execute Stmt (a string) N times. Repeat this process 3 times and report the time required for each repetition.
A Direct Approach, Continued

• You can also use this from the command line:

 ...# python3 -m timeit --setup='from fib import fib' 'fib(10)'
 10000 loops, best of 3: 97 usec per loop

• This command automatically chooses a number of executions of fib to give a total time that is large enough for an accurate average, repeats 3 times, and reports the best time.
Strengths and Problems with Direct Approach

- **Good**: Gives actual times; answers question completely for given input and machine.
- **Bad**: Results apply only to tested inputs.
- **Bad**: Results apply only to particular programs and platforms.
- **Bad**: Cannot tell us anything about complexity of algorithm or of problem.
But Can't We Extrapolate?

• Why not try a succession of times, and use that to figure out timing in general?

 ...# for t in 5 10 15 20 25 30; do
 > echo -n "$t: "
 > python3 -m timeit --setup='from fib import fib' "fib($t)"
 > done
 5: 100000 loops, best of 3: 8.16 usec per loop
 10: 10000 loops, best of 3: 96.8 usec per loop
 15: 1000 loops, best of 3: 1.08 msec per loop
 20: 100 loops, best of 3: 12 msec per loop
 25: 10 loops, best of 3: 133 msec per loop
 30: 10 loops, best of 3: 1.47 sec per loop

• This looks to be exponential in t with exponent of ≈ 1.6.

• But... what if the program special-cases some inputs?

• ...and this still only works for a particular program and machine.
Worst Case, Average Case

- To avoid the problem of getting results only for particular inputs, we usually ask a more general question, such as:
 - What is the **worst case** time to compute $f(X)$ as a function of the size of X, or
 - what is the **average case** time to compute $f(X)$ over all values of X (weighted by likelihood).

- Average case is hard, so we’ll let other courses deal with it.

- But now we seem to have a harder problem than before: how do we get worst-case times? Doesn’t that require testing all cases?

- And when we do, aren’t we still sensitive to machine model, compiler, etc.?
Operation Counts and Scaling

• Instead of getting precise answers in units of physical time, we therefore settle for a proxy measure that will remain meaningful over changes in architecture or compiler.

• Choose some operation(s) of interest and count how many times they occur.

• Examples:
 - How many times does fib get called recursively during computation of fib(N)?
 - How many addition operations get performed by fib(N)?

• You can no longer get precise times, but if the operations are well-chosen, results are proportional to actual time for different values of N.

• Thus, we look at how computation time scales in the worst case.

• Can compare programs/algorithms on the basis of which scale better.
Asymptotic Results

• Sometimes, results for “small” values are not indicative.

• E.g., suppose we have a prime-number tester that contains a look-up table of the primes up to 1,000,000,000 (about 50 million primes).

• Tests for numbers up to 1 billion will be faster than for larger numbers.

• So in general, we tend to ask about asymptotic behavior of programs: as size of input goes to infinity.
Expressing Approximation

• So, we are looking for measures of program performance that give us a sense of how computation time scales with size of input.

• And we are further interested in ignoring finite sets of special cases that a given program can compute quickly.

• Finally, precise worst-case functions can be very complicated, and the precision is generally not terribly important anyway.

• These considerations motivate the use of order notation to express approximations of execution time or space.
The Notation

• Suppose that \(f \) is a function of one parameter returning real numbers.

• We use the notation \(O(f) \) to mean “the set of all one-parameter functions whose absolute values are eventually bounded above by some multiple of \(f \)'s absolute value.” Formally:

\[
O(f) = \{ g \mid \text{there exist } p, M \text{ such that if } x > M, |g(x)| \leq p|f(x)| \}
\]

• Similarly, we have “the set of all one-parameter functions whose absolute values are eventually bounded below by some multiple of \(f \)'s absolute value:"

\[
\Omega(f) = \{ g \mid \text{there exist } p > 0, M \text{ such that if } x > M, |g(x)| \geq p|f(x)| \}
\]

• And finally those bounded both above and below:

\[
\Theta(f) = \Omega(f) \cap O(f)
\]
Illustration

- Here, \(f \in O(g) \) (\(p = 2 \), see blue line), even though \(f(x) > g(x) \). Likewise, \(f \in \Omega(g) \) (\(p = 1 \), see red line), and therefore \(f \in \Theta(g) \).

- That is, \(f(x) \) is eventually (for \(x > M = 1 \)) no more than proportional to \(g(x) \) and no less than proportional to \(g(x) \).
Illustration, contd.

Here, $f' \in \Omega(g)$ ($p = 0.5$), even though $g(x) > f'(x)$ everywhere.
Uses of the Notation

• You may have seen $O(\cdot)$ notation in math, where we say things like

$$f(x) \in f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + O(f'''(0)x^3)$$

• Adding or multiplying sets of functions produces sets of functions. The one above means “the set of all functions $g(x)$ such that

$$g(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + h(x)$$

where $h(x) \in O(f'''(0)x^3)$.”

• I prefer \in to the traditional $=,$ since the latter makes no formal sense.