Lecture 36: MapReduce

Frameworks

MapReduce is a framework for batch processing of Big Data:
- **Framework**: A system used by programmers to build applications
- **Batch processing**: All the data is available at the outset and results aren’t consumed until processing completes
- **Big Data**: A buzzword used to describe datasets so large that they reveal facts about the world via statistical analysis

The big ideas that underly MapReduce:
- Datasets are too big to be stored or analyzed on one machine.
- When using multiple machines, systems issues abound.
- **Pure functions** enable an abstraction barrier between data processing logic and distributed system administration.

Systems

Systems research enables the development of applications by defining and implementing abstractions:
- Operating systems provide a stable, consistent interface to unreliable, inconsistent hardware
- Networks provide a simple, robust data transfer interface to constantly evolving communications infrastructure
- Databases provide a declarative interface to software that stores and retrieves information efficiently
- Distributed systems provide a single-entity-level interface to a cluster of multiple machines

Unifying property of effective systems:
- **Hide complexity, but retain flexibility**

Unix Pipes as a Framework

(Review) Unix embeds a framework for composing processes:
- Each process has a standard input stream (of characters) and a standard output stream (plus a standard error stream "on the side.")
- Programming languages provide functions to read and write to these streams, just as for ordinary files.
- In Python, these streams are called `sys.stdin`, `sys.stdout`, and `sys.stderr`.
- They are objects whose interface provides read and write operations and iterators.
- The OS allows one to string together (`compose`) sequences of programs into a pipeline, enabled by the common stream interface. E.g.,

```bash
tr -c -s '[:alpha:]' '\[\n*\]' < FILE | sort | uniq -c | \nsort -n -r -k 1,1 | sed 20q
```

prints the 20 most frequent words in `FILE`, with their counts.

MapReduce Idea

A MapReduce job takes a **mapper** program and a **reducer** program from a user and applies them to a set of data.
- **Map phase**: Apply a mapper function to inputs, emitting a set of intermediate key-value pairs.
- **Reduce phase**: For each distinct intermediate key, apply a reducer function to accumulate all the values with that key. Return a list of accumulated values for the key.

Example I: Counting Occurrences

Counting occurrences of words in a large collection of documents:
- **Input to map operation**: pairs (name of document, text of document).
- **Output from map operation**: pairs (word, 1) (the 1 represents a count).
- **Input to reduce operation**: (word, iterator over all counts for that word)
- **Output from reduce operation**: sum of all counts for one word.
- (Could make things more efficient by having the map operation do some counting and return just one count for each distinct word).
Example II: Distributed Grep

- Input to map: Pairs (name of document, text of document).
- Output from map: pairs (name of document, line matching target pattern)
- Output from reduce: the list of matching lines from each document.
 (Reduce is trivial here; we're just using map.)

Example III: Reverse Web-Link Graph

- Input to map: Pairs (source URL, webpage content of URL)
- Output from map: Pairs (target URL, source URL) for each hyperlink target on the input webpage.
- Output from reduce: (target URL, list of source URLs).
- The work here is mostly in gathering up and sorting the results of map.

Inverted Index

- Input to map: Pairs (document name, document contents).
- Output from map: Pairs (word from document, document name)
- Output from reduce: for each word, list of all documents it came from.

Scale

Way back in August 2004, MapReduce at Google processed this much data in using MapReduce:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of jobs</td>
<td>29,423</td>
</tr>
<tr>
<td>Average job completion time</td>
<td>634 secs</td>
</tr>
<tr>
<td>Machine days used</td>
<td>79,186 days</td>
</tr>
<tr>
<td>Input data read</td>
<td>3,288 TB</td>
</tr>
<tr>
<td>Intermediate data produced</td>
<td>758 TB</td>
</tr>
<tr>
<td>Output data written</td>
<td>193 TB</td>
</tr>
<tr>
<td>Average worker machines per job</td>
<td>157</td>
</tr>
<tr>
<td>Average worker deaths per job</td>
<td>1.2</td>
</tr>
<tr>
<td>Average map tasks per job</td>
<td>3,351</td>
</tr>
<tr>
<td>Average reduce tasks per job</td>
<td>55</td>
</tr>
<tr>
<td>Unique map implementations</td>
<td>395</td>
</tr>
<tr>
<td>Unique reduce implementations</td>
<td>269</td>
</tr>
<tr>
<td>Unique map/reduce combinations</td>
<td>426</td>
</tr>
</tbody>
</table>
What the Framework Provides

- **Fault tolerance:** A machine or hard drive might crash.
 - The MapReduce framework automatically re-runs failed tasks.
- **Speed:** Some machine might be slow because it's overloaded or failing.
 - The framework can run multiple copies of a task and keep the result of the one that finishes first.
- **Network locality:** Data transfer is expensive.
 - The framework tries to schedule map tasks on the machines that hold the data to be processed.
- **Monitoring:** Will my job finish before dinner?!?
 - The framework provides a web-based interface describing jobs.