Announcements:

- Hackers @ Berkeley is hosting their second annual “HackJam 2.0” hackathon, this Saturday at 2 pm, in the Wozniak Lounge. Food and prizes will be provided by RewardMe. For more information, check out our Facebook event site here at http://tinyurl.com/hackjam. “Get ready and come build something awesome with us on Saturday!”

- “The Consulting Club at Berkeley is an exciting new opportunity designed to help students understand and enter the consulting industry. First General Meeting will be on Feb. 2, from 7pm-8pm in Barrows 122. Please see our event page for more information! http://www.facebook.com/events/131015247016788”

Do You Understand the Machinery? (IV)

What is printed: (1, infinite loop, or error) and why?

```python
def g(x):
    print(x)
def f(f):
    f(1)
f(g)
```

Answer (IV)

This prints 1. When we reach `f(1)` inside `f`, the call expression, and therefore the name `f`, evaluated in the environment `E`, where the value of `f` is the global function bound to `g`:

```
<table>
<thead>
<tr>
<th></th>
<th>g()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f()</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Do You Understand the Machinery? (V)

What is printed: (0, 1, or error) and why?

```python
def f():
    return 0
def g():
    return f()
def h(k):
    def f():
        return 1
    p = k
    return p()
print(h(g))
```

Answer (V)

This prints 0. Function values are attached to current environments when they are first created (by lambda or def). Assignments (such as to `p`) don’t themselves create new values, but only copy old ones, so that when `g` is evaluated, it is equal to `k`, which is equal to `g`, which is attached to the global environment.

Observation: Environments Reflect Nesting

- From what we’ve seen so far:
 Linking of environment frames \iff Nesting of definitions.

- For example, given
  ```python
def f(x):
    def g(x):
        def h(x):
            print(x)
        ...
    p = k
    return p()
print(h(g))
```

 The structure of the program tells you that the environment in which `print(x)` is evaluated will always be a chain of 4 frames:
 - A local frame for `h` linked to ...
 - A local frame for `g` linked to ...
 - A local frame for `f` linked to ...
 - The global frame.

- However, when there are multiple local frames for a particular function lying around, environment diagrams can help sort them out.
Do You Understand the Machinery? (VI)

What is printed: (0, 1, or error) and why?

def f(p, k):
 def g():
 print(k)
 if k == 0:
 f(g, 1)
 else:
 p()
 f(None, 0)

Higher-Order Functions at Work in Project #1

This project uses functions to represent a number of aspects of playing a game:

- **Action**: Integer × Integer → Integer × Integer × Boolean

 (turn total, dice roll) → (amount scored, new turn total, done?)

- **Plan**: Integer → Action

 turn total → what to do

- **Strategy**: Integer × Integer → Plan

 (your score, opponent score) → how to play

- **Dice**: → Integer

 () → random roll of die

Higher-Order Functions at Work: Iterative Update

- A general strategy for solving an equation:

 - **Guess a solution**

 - **while** your guess isn't good enough:

 - update your guess

- The three underlined segments are parameters to the process.

- The last two segments clearly require functions for their representation—a **predicate** function (returning true/false values), and a function from values to values.

- In code,

  ```python
  def iter_solve(guess, done, update):
      """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result."""
      if done(guess):
          return guess
      else:
          return iter_solve(update(guess), done, update)
  ```

Recursive Versions

```python
def iter_solve(guess, done, update):
    """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result."""
    if done(guess):
        return guess
    else:
        return iter_solve(update(guess), done, update)
```

Answer (VI)

This prints 0. There are two local frames for f when p() is called. In the first one, k is 0; in the second, it is 1. When p() is called, its value comes from the value of g that was created in the first frame, where k is 0.
Iterative Version

```python
def iter_solve(guess, done, update):
    """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result."""
    while not done(guess):
        guess = update(guess)
    return guess
```

Adding a Safety Net

- In real life, we might want to make sure that the function doesn't just loop forever, getting no closer to a solution.

```python
def iter_solve(guess, done, update, iteration_limit=32):
    """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result. Causes error if more than ITERATION_LIMIT applications of UPDATE are necessary."""
    def solution(guess, iteration_limit):
        if done(guess):
            return guess
        elif iteration_limit <= 0:
            raise ValueError("failed to converge")
        else:
            return solution(update(guess), iteration_limit-1)
    return solution(guess, iteration_limit)
```

Adding a Safety Net: Code

- In real life, we might want to make sure that the function doesn't just loop forever, getting no closer to a solution.

```python
def iter_solve(guess, done, update, iteration_limit=32):
    """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result. Causes error if more than ITERATION_LIMIT applications of UPDATE are necessary."""
    if iteration_limit <= 0:
        raise ValueError("failed to converge")
    guess, iteration_limit = update(guess), iteration_limit-1
    return guess
```

Using Iterative Solving For Newton’s Method (I)

- Newton’s method takes a function, its derivative, and an initial guess, and produces a result to some desired tolerance (that is, to some definition of “close enough”).
- Given a guess, x_k, compute the next guess, x_{k+1} by
 \[
 x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}
 \]

```python
def newton_solve(func, deriv, start, tolerance):
    """Return x such that |FUNC(x)| < TOLERANCE, given initial estimate START and assuming DERIV is the derivative of FUNC."""
    def close_enough(x):
        ?
    def newton_update(x):
        ?
    return iter_solve(start, close_enough, newton_update)
```

Using Iterative Solving for Newton’s Method (II)

- Newton’s method takes a function, its derivative, and an initial guess, and produces a result to some desired tolerance (that is, to some definition of “close enough”).
- Given a guess, x_k, compute the next guess, x_{k+1} by
 \[
 x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}
 \]

```python
def newton_solve(func, deriv, start, tolerance):
    """Return x such that |FUNC(x)| < TOLERANCE, given initial estimate START and assuming DERIV is the derivative of FUNC."""
    def close_enough(x):
        return abs(func(x)) < tolerance
    def newton_update(x):
        return x - func(x) / deriv(x)
    return iter_solve(start, close_enough, newton_update)
```
Using newton_solve for $\sqrt{\cdot}$ and \log_{\cdot}

```
def square_root(a):
    return newton_solve(lambda x: x*x - a, lambda x: 2 * x, a/2, 1e-5)

def logarithm(a, base = 2):
    return newton_solve(lambda x: base**x - a, lambda x: x * base**(x-1), 1, 1e-5)
```

Dispensing With Derivatives

- What if we just want to work with a function, without knowing its derivative?
- Book uses an approximation:

```
find_root = lambda func, start=1, tolerance=1e-5:
    approx_deriv = lambda f, delta = 1e-5:
        lambda x: (func(x + delta) - func(x)) / delta
    return newton_solve(func, approx_deriv(func), start, tolerance)
```
- This is nice enough, but looks a little ad hoc (how did I pick delta?).
- Another alternative is the secant method.

The Secant Method

- Newton's method was

\[
x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}
\]

- The secant method uses that last two values to get (in effect) a replacement for the derivative:

\[
x_{k+1} \approx x_k - \frac{f(x_k)}{x_k - x_{k-1}}
\]

- But this is a problem for us: so far, we've only fed the update function the value of x_k each time. Here we also need x_{k-1}.
- How do we generalize to allow arbitrary extra data (not just x_{k-1})?

Generalized iter_solve

```
def iter_solve2(guess, done, update, state=None):
    """Return the result of repeatedly applying UPDATE, starting at GUESS and STATE, until DONE yields a true value when applied to the result. Besides a guess, UPDATE also takes and returns a state value, which is also passed to DONE."""
    while not done(guess, state):
        guess, state = update(guess, state)
    return guess
```

Using Generalized iter_solve2 for the Secant Method

The secant method:

\[
x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})}
\]

```
def secant_solve(func, start0, start1, tolerance):
    def close_enough(x, state):
        return abs(func(x)) < tolerance
    def secant_update(xk, xk1):
        return (xk - func(xk) * (xk - xk1) / (func(xk) - func(xk1), xk)
    return iter_solve2(start1, close_enough, secant_update, start0)
```