Lecture #5: Higher-Order Functions

Announcements:

• Hackers @ Berkeley is hosting their second annual “HackJam 2.0” hackathon, this Saturday at 2 pm, in the Wozniak Lounge. Food and prizes will be provided by RewardMe. For more information, check out our Facebook event site here at http://tinyurl.com/hackjam. “Get ready and come build something awesome with us on Saturday!”

• “The Consulting Club at Berkeley is an exciting new opportunity designed to help students understand and enter the consulting industry. First General Meeting will be on Feb. 2, from 7pm-8pm in Barrows 122. Please see our event page for more information! http://www.facebook.com/events/131015247016788”
Do You Understand the Machinery? (IV)

What is printed: (1, infinite loop, or error) and why?

```python
def g(x):
    print(x)

def f(f):
    f(1)

f(g)
```
Answer (IV)

This prints 1. When we reach $f(1)$ inside f, the call expression, and therefore the name f, evaluated in the environment E, where the value of f is the global function bound to g:
What is printed: (0, 1, or error) and why?

def f():
 return 0

def g():
 return f()

def h(k):
 def f():
 return 1
 p = k
 return p()

print(h(g))
Answer (V)

This prints 0. Function values are attached to current environments when they are first created (by `lambda` or `def`). Assignments (such as to `p`) don’t themselves create new values, but only copy old ones, so that when `p` is evaluated, it is equal to `k`, which is equal to `g`, which is attached to the global environment.
Observation: Environments Reflect Nesting

• From what we’ve seen so far:

 * Linking of environment frames \iff Nesting of definitions.

• For example, given

```python
def f(x):
    def g(x):
        def h(x):
            print(x)
        print(x)
    print(x)
```

The structure of the program tells you that the environment in which `print(x)` is evaluated will always be a chain of 4 frames:

- A local frame for `h` linked to ...
- A local frame for `g` linked to ...
- A local frame for `f` linked to ...
- The global frame.

• However, when there are multiple local frames for a particular function lying around, environment diagrams can help sort them out.
Do You Understand the Machinery? (VI)

What is printed: (0, 1, or error) and why?

def f(p, k):
 def g():
 print(k)
 if k == 0:
 f(g, 1)
 else:
 p()
f(None, 0)
Answer (VI)

This prints 0. There are two local frames for \(f \) when \(p() \) is called. In the first one, \(k \) is 0; in the second, it is 1. When \(p() \) is called, its value comes from the value of \(g \) that was created \textit{in the first frame}, where \(k \) is 0.
Higher-Order Functions at Work in Project #1

This project uses functions to represent a number of aspects of playing a game:

- **Action**: Integer × Integer → Integer × Integer × Boolean

 (turn total, dice roll) ↦ (amount scored, new turn total, done?)

- **Plan**: Integer → Action

 turn total ↦ what to do

- **Strategy**: Integer × Integer → Plan

 (your score, opponent score) ↦ how to play

- **Dice**: → Integer

 () ↦ random roll of die
def play(strategies):
 while game is not over:
 get a plan from the current player’s strategy
 Call take_turn with a plan and a die (‘‘dice’’)
 return winner

def take_turn(plan, dice, ...):
 while turn is not over:
 get an action (from plan) and outcome (from dice)
 call the action to update turn total and determine if done
 return points scored during the turn
Higher-Order Functions at Work: Iterative Update

- A general strategy for solving an equation:
 - Guess a solution
 - while your guess isn’t good enough:
 * update your guess
- The three underlined segments are parameters to the process.
- The last two segments clearly require functions for their representation—
 a predicate function (returning true/false values), and a function
 from values to values.
- In code,

```python
def iter_solve(guess, done, update):
    """Return the result of repeatedly applying UPDATE,
    starting at GUESS, until DONE yields a true value
    when applied to the result.""
```
Recursive Versions

def iter_solve(guess, done, update):
 """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result."""
 if done(guess):
 return guess
 else:
 return iter_solve(update(guess), done, update)

or

def iter_solve(guess, done, update):
 def solution(guess):
 if done(guess):
 return guess
 else:
 return solution(update(guess))
 return solution(guess)
def iter_solve(guess, done, update):
 """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result.""
 while not done(guess):
 guess = update(guess)
 return guess
Adding a Safety Net

- In real life, we might want to make sure that the function doesn't just loop forever, getting no closer to a solution.

```python
def iter_solve(guess, done, update, iteration_limit=32):
    """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result. Causes error if more than ITERATION_LIMIT applications of UPDATE are necessary."""
```
Adding a Safety Net: Code

- In real life, we might want to make sure that the function doesn't just loop forever, getting no closer to a solution.

```python
def iter_solve(guess, done, update, iteration_limit=32):
    """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result. Causes error if more than ITERATION_LIMIT applications of UPDATE are necessary.""

    def solution(guess, iteration_limit):
        if done(guess):
            return guess
        elif iteration_limit <= 0
            raise ValueError("failed to converge")
        else:
            return solution(update(guess), iteration_limit-1)
    return solution(guess, iteration_limit)
```
def iter_solve(guess, done, update, iteration_limit=32):
 """Return the result of repeatedly applying UPDATE, starting at GUESS, until DONE yields a true value when applied to the result. Causes error if more than ITERATION_LIMIT applications of UPDATE are necessary."""

 while not done(guess):
 if iteration_limit <= 0:
 raise ValueError("failed to converge")
 guess, iteration_limit = update(guess), iteration_limit-1
 return guess
Using Iterative Solving For Newton’s Method (I)

- Newton’s method takes a function, its derivative, and an initial guess, and produces a result to some desired tolerance (that is, to some definition of “close enough”).
- Given a guess, \(x_k \), compute the next guess, \(x_{k+1} \) by

\[
x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}
\]

```python
def newton_solve(func, deriv, start, tolerance):
    """Return x such that |FUNC(x)| < TOLERANCE, given initial estimate START and assuming DERIV is the derivative of FUNC."""
    def close_enough(x):
        #
    def newton_update(x):
        #
    return iter_solve(start, close_enough, newton_update)
```

Last modified: Fri Mar 2 00:44:57 2012
Using Iterative Solving for Newton's Method (II)

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]

```python
def newton_solve(func, deriv, start, tolerance):
    """Return x such that |FUNC(x)| < TOLERANCE, given initial estimate START and assuming DERIV is the derivatative of FUNC."""
    def close_enough(x):
        return abs(func(x)) < tolerance
    def newton_update(x):
        return x - func(x) / deriv(x)
    return iter_solve(start, close_enough, newton_update)
```

Last modified: Fri Mar 2 00:44:57 2012 CS61A: Lecture #5 18
Using `newton_solve` for $\sqrt{}$ and \log.

```python
def square_root(a):
    return newton_solve(lambda x: x*x - a, lambda x: 2 * x, a/2, 1e-5)

def logarithm(a, base = 2):
    return newton_solve(lambda x: base**x - a, lambda x: x * base**(x-1), 1, 1e-5)
```

Last modified: Fri Mar 2 00:44:57 2012

CS61A: Lecture #5 19
Dispensing With Derivatives

• What if we just want to work with a function, without knowing its derivative?

• Book uses an approximation:

```python
def find_root(func, start=1, tolerance=1e-5):
    def approx_deriv(f, delta = 1e-5):
        return lambda x: (func(x + delta) - func(x)) / delta
    return newton_solve(func, approx_deriv(func), start, tolerance)
```

• This is nice enough, but looks a little ad hoc (how did I pick delta?).

• Another alternative is the *secant method*.
The Secant Method

• Newton’s method was

\[x_{k+1} = x_k - \frac{f(x)}{f'(x)} \]

• The secant method uses that last two values to get (in effect) a replacement for the derivative:

\[x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \]

• But this is a problem for us: so far, we’ve only fed the update function the value of \(x_k \) each time. Here we also need \(x_{k-1} \).

• How do we generalize to allow arbitrary extra data (not just \(x_{k-1} \))?
def iter_solve2(guess, done, update, state=None):
 """Return the result of repeatedly applying UPDATE, starting at GUESS and STATE, until DONE yields a true value when applied to the result. Besides a guess, UPDATE also takes and returns a state value, which is also passed to DONE."""
 while not done(guess, state):
 guess, state = update(guess, state)
 return guess
Using Generalized iter_solve2 for the Secant Method

The secant method:

\[x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_{k-1})}{f(x_k) - f(x_{k-1})} \]

def secant_solve(func, start0, start1, tolerance):
 def close_enough(x, state):
 return abs(func(x)) < tolerance
 def secant_update(xk, xk1):
 return (xk - func(xk) * (xk - xk1)
 / (func(xk) - func(xk1),
 xk)
 return iter_solve2(start1, close_enough, secant_update, start0)