A function is recursive if it calls itself. Below is recursive factorial function.

```python
def factorial(n):
    if n == 0 or n == 1:
        return 1
    else:
        return n * factorial(n-1)
```

It seems like this won’t work – we haven’t finished defining factorial, yet we’re already calling it. However, we do have one base case: when \(n \) is 0 or 1. Now we can compute \(\text{factorial}(1) \) in terms of \(\text{factorial}(0) \), and \(\text{factorial}(2) \) in terms of \(\text{factorial}(1) \), and \(\text{factorial}(3) \) – well, you get the idea.

There are three common steps in a recursive definition:

1. *Figure out your base case:* Ask yourself, “what is the simplest argument I could possibly get?” The answer should be simple, and is often given by definition. For example, \(\text{factorial}(0) \) is 1, by definition, or the first two Fibonacci numbers are 0 and 1.

2. *Make a recursive call with a simpler argument:* Simplify your problem, and assume that a recursive call for this new problem will simply work. This is called the “leap of faith” – as you use more recursion, you will get more used to this idea. For `factorial`, we make the recursive call `factorial(n-1)` – this is the recursive breakdown.

3. *Use your recursive call to solve the full problem:* Remember that we are assuming your recursive call just works. With the result of the recursive call, how can you solve the original problem you were asked? For `factorial`, we just multiply \((n - 1)! \) by \(n \).
1. Print out a countdown using recursion.

```python
def countdown(n):
    """
    >>> countdown(3)
    3
    2
    1
    """
```

2. Is there an easy way to change `countdown` to count up instead?

3. Write a procedure `expt(base, power)`, which implements the exponent function. For example, `expt(3, 2)` returns 9, and `expt(2, 3)` returns 8. Use recursion.

```python
def expt(base, power):
```

4. Write `sum_primes_up_to(n)`, which sums up every prime up to and including `n`. Assume you have an `isprime()` predicate.

```python
def sum_primes_up_to(n):
```
5. Now write sum_filter_up_to(n, pred), which is a general version that adds all integers 1 through n that satisfy the argument pred.

 def sum_filter_up_to(n, pred):

2 Tree Recursion

Consider a function that requires more than one recursive call. A simple example is a function that computes Fibonacci numbers:

 def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n - 1) + fib(n - 2)

This is where recursion really begins to shine: it allows us to explore two different calculations at the same time. In this case, we are exploring two different possibilities (or paths): the \(n - 1 \) case and the \(n - 2 \) case. With the power of recursion, exploring all possibilities like this is very straightforward. You simply try everything using recursive calls for each case, then combine the answers you get back.

This type of recursion is called \textit{tree recursion}, because the different branches of computation that form from this recursion end up looking like an upside-down tree:

\[
\begin{array}{c}
\text{fib(4)} \\
\text{fib(3)} \quad \text{fib(2)} \\
\text{fib(2)} \quad \text{fib(1)}
\end{array}
\]

We could, in theory, use loops to write the same procedure. However, problems that are naturally solved using tree recursive procedures are generally difficult to write iteratively, and require the use of additional data structures to hold information. As a general rule of thumb, whenever you need to try multiple possibilities at the same time, you should consider using tree recursion.
2.1 Exercises

1. I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function `count_stair_ways` that solves this problem for me.

```python
def count_stair_ways(n):
```

2. Pascal’s triangle is a useful recursive definition that tells us the coefficients in the expansion of the polynomial \((x + a)^n\). Each element in the triangle has a coordinate, given by the row it is on and its position in the row (which you could call its column). Every number in Pascal’s triangle is defined as the sum of the item above it and the item that is directly to the upper left of it. If there is a position that does not have an entry, we treat it as if we had a 0 there. Below are the first few rows of the triangle:

<table>
<thead>
<tr>
<th>Item:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 0:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row 1:</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row 2:</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row 3:</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Row 4:</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Row 5:</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
...

Define the procedure `pascal(row, column)` which takes a row and a column, and finds the value at that position in the triangle. Don’t use the closed-form solution, if you know it.

```python
def pascal(row, column):
```
3. The TAs want to print handouts for their students. However, for some unfathomable reason, both the printers are broken; the first printer only prints multiples of n_1, and the second printer only prints multiples of n_2. Help the TAs figure out whether or not it is possible to print an exact number of handouts!

```python
def hasSum(sum, n1, n2):
    """
    >>> hasSum(1, 3, 5)
    False
    >>> hasSum(5, 3, 5) # 1(5) + 0(3) = 5
    True
    >>> hasSum(11, 3, 5) # 2(3) + 1(5) = 11
    True
    """
```

3. Mutual Recursion

Sometimes it isn’t enough to have one function call itself; sometimes functions recursively call one another! Here is an example:

```python
def even(n):
    if n == 0:
        return True
    return odd(n - 1)

def odd(n):
    if n == 0:
        return False
    return even(n - 1)
```

Given a positive integer, the function `even` will return a boolean value representing whether or not the integer is even. However, notice that the recursive call is to `odd`, not itself. We call this mutual recursion because because `even` and `odd` are defined in terms of one another, and as a result alternatively call one another to arrive at the answer.

Mutual recursion is especially useful for when you need to deal with different data structures that interact with one another. We’ll see this later in the semester with Trees.
3.1 (Debate) Practice

1. Let’s answer the age-old question of “What came first, the chicken or the egg?” Each function takes an argument (pun unintended!), which is a boolean value that represents an argument for whether or not the corresponding element came first. To mirror the debate, let’s do this:

```python
def chicken(argument=True):
    print("Chickens!")
    return egg(argument)
def egg(argument=True):
    print("Eggs!")
    return chicken(argument)
```

We could argue that chickens came first by calling `chicken()`, but then the argument would never be resolved. That’s unfortunate! Therefore, let’s also add `generations`, which is a variable that represents which generation we are on. For example, if you argue for the 5th generation chicken, you’re arguing for not the 4th generation egg. The 0th generation determines the winner.

```python
def chicken(argument, generations=0):
    """ Argue whether or not the chicken came first. 
    >>> chicken(True)
    [Insert reason chickens came first.]
    >>> chicken(False) # is equivalent to egg(True)
    [Insert reason eggs came first.]
    >>> chicken(False, 1) # is equivalent to egg(True, 0)
    [Insert reason eggs came first.]
    """

def egg(argument, generations=0):
    """Argue whether or not the egg came first."""
We’ve written factorial recursively. Let’s compare the iterative and recursive versions:

```python
def factorial_recursive(n):
 if n <= 0:
 return 1
 else:
 return n * factorial_recursive(n-1)

def factorial_iterative(n):
 total = 1
 while n > 0:
 total = total * n
 n = n - 1
 return total
```

Notice that the recursive test corresponds to the iterative test. While the recursive function “works” until \( n \) is less than or equal to 0, the iterative “works” while \( n \) is greater than 0. They are essentially the same.

Let’s also compare fibonacci.

```python
def fib_r(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 else:
 return fib_r(n - 1) + fib_r(n - 2)

def fib_i(n):
 curr, next = 0, 1
 while n > 1:
 curr, next = next, curr + next
 n = n - 1
 return curr
```

For the recursive version, we copied the definition of the Fibonacci sequence straight into code! The \( n \)th fibonacci number is literally the sum of the two before it. Iteratively, you need to keep track of more numbers and have a better understanding of the code.

Sometimes code is easier to write iteratively, sometimes code is easier to write recursively. Have fun experimenting with both!