Announcements

- HW3 out, due Tuesday at 7pm
- Midterm next Wednesday at 7pm
 - Keep an eye out for your assigned location
 - Old exams posted
 - Review sessions
 - Saturday 2-4pm in 2050 VLSB
 - Extended office hours Sunday 11-3pm in 310 Soda
 - HKN review session Sunday 3-6pm in 145 Dwinelle
- Environment diagram handout on website
- Code review system online
 - See Piazza post for details

Newton’s Method

Begin with a function f and an initial guess x

Compute the value of f at the guess: $f(x)$

Compute the derivative of f at the guess: $f'(x)$

Update guess to be: $x = \frac{f(x)}{f'(x)}$

Visualization: [Link](http://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif)

Special Case: Square Roots

How to compute $\text{square_root}(a)$

Idea: Iteratively refine a guess x about the square root of a

Update: $x = \frac{x + \frac{a}{x}}{2}$

Implementation questions:
- What guess should start the computation?
- How do we know when we are finished?

Special Case: Cube Roots

How to compute $\text{cube_root}(a)$

Idea: Iteratively refine a guess x about the cube root of a

Update: $x = \frac{2x + a}{3}$

Implementation questions:
- What guess should start the computation?
- How do we know when we are finished?

Iterative Improvement

First, identify common structure.

Then define a function that generalizes the procedure.

```python
def iter_improve(update, done, guess=1, max_updates=1000):
    """Iteratively improve guess with update until done returns a true value."
    while not done(guess) and k < max_updates:
        guess = update(guess)
        k = k + 1
    return guess
```

```python
>>> iter_improve(golden_update, golden_test)
1.618033988749895
```
Newton’s Method for nth Roots

```python
def nth_root_func_and_derivative(n, a):
    def root_func(x):
        return pow(x, n) - a
    def derivative(x):
        return n * pow(x, n-1)
    return root_func, derivative

def nth_root_newton(a, n):
    root_func, deriv = nth_root_func_and_derivative(n, a)
    def update(x):
        return x - root_func(x) / deriv(x)
    def done(x):
        return root_func(x) == 0
    return iter_improve(update, done)
```

Factorial

The factorial of a non-negative integer \(n \) is

\[
!n = \begin{cases}
1, & n = 0 \text{ or } n = 1 \\
 n * (n-1)! & n > 1
\end{cases}
\]

This is called a recurrence relation;
Factorial is defined in terms of itself
Can we write code to compute factorial using the same pattern?

```python
def factorial(n):
    if n == 0 or n == 1:
        return 1
    total = 1
    while n >= 1:
        total, n = total * n, n - 1
    return total
```

Computing Factorial

We can compute factorial using the direct definition

```python
def factorial(n):
    if n == 0 or n == 1:
        return 1
    total = 1
    while n >= 1:
        total, n = total * n, n - 1
    return total
```

Factorial Environment Diagram

Let’s see what happens!

```
```
A function is recursive if the body calls the function itself, either directly or indirectly.

Recursive functions have two important components:
1. **Base case(s)**, where the function directly computes an answer without calling itself.
2. **Recursive case(s)**, where the function calls itself as part of the computation.

```python
def factorial(n):
    if n == 0 or n == 1:
        return 1
    return n * factorial(n - 1)
```

Names typically don’t matter for correctness, but they matter tremendously for legibility.

```
boolean turn_is_over  
d  
dice  
play_helper  
take_turn
```

Use names for repeated compound expressions:
```
if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))
    h = sqrt(square(a) + square(b))
    if h > 1:
        x = x + h
```

Use names for meaningful parts of compound expressions:
```
x = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)
```

Practical Guidance: DRY

Sometimes, removing repetition requires restructuring the code:

```python
def find_quadratic_root(a, b, c, plus=True):
    """Applies the quadratic formula to the polynomial ax^2 + bx + c."""
    if plus:
        return (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)
    else:
        return (-b - sqrt(square(b) - 4 * a * c)) / (2 * a)
```

```python
def find_quadratic_root(a, b, c, plus=True):
    """Applies the quadratic formula to the polynomial ax^2 + bx + c."""
    disc_term = sqrt(square(b) - 4 * a * c)
    if not plus:
        disc_term *= -1
    return (-b + disc_term) / (2 * a)
```

Test-Driven Development

Write the test of a function before you write a function. A test will clarify the (one) job of the function. Your tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on. You can’t depend upon code that hasn’t been tested. Run your old tests again after you make new changes.