Closure Property of Data

A tuple can contain another tuple as an element.
Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.
Nested pairs (old): (1, (2, (3, (4, None))))
Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4)))))

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call on the rest of the list.

```python
def extend_rlist(s1, s2):
    if s1 is Rlist.empty:
        return s2
    return Rlist(s1.first, extend_rlist(s1.rest, s2))
```

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

```python
def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
    if s is Rlist.empty:
        return s
    rest = filter_rlist(s.rest, fn)
    if fn(s.first):
        return Rlist(s.first, rest)
    return rest
```
Tree Structured Data

Nested Sequences are Hierarchical Structures.

\[((1, 2), (3, 4)), 5\]

Trees can have values at internal nodes as well as their leaves.

Trees with Internal Node Values

Recursive Tree Processing

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))
```

```
def map_tree(tree, fn):
    if type(tree) != tuple:
        return fn(tree)
    return tuple(map_tree(branch, fn) for branch in tree)
```

Trees with Internal Node Values

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```
def count_factors(n):
    factors = 0
    for k in range(1, n + 1):
        if n % k == 0:
            factors += 1
    sqrt_n = sqrt(n)
    k, factors = 1, 0
    while k < sqrt_n:
        if n % k == 0:
            factors += 2
            k += 1
        if k + k == n:
            factors += 1
    return factors
```

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

\(n\): size of the problem

\(R(n)\): Measurement of some resource used (time or space)

\[R(n) = \Theta(f(n)) \]

means that there are positive constants \(k_1\) and \(k_2\) such that

\[k_1 \cdot f(n) \leq R(n) \leq k_2 \cdot f(n) \]

for sufficiently large values of \(n\).

Constant Time: \(\Theta(1)\)

Time does not depend on input size.

```
def g(n):
    return 42
```

```
def foo(n):
    baz = 7
    if n > 5:
        baz += 5
    return baz
```

```
def is_even(n):
    return n % 2 == 0
```
Iteration vs. Tree Recursion (Time)

Iterative and recursive implementations are not the same.

```
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n - 1):
        prev, curr = curr, prev + curr
    return curr
```

```
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n - 2) + fib(n - 1)
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Iterative</th>
<th>Recursive</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n^2)$</td>
</tr>
</tbody>
</table>

Next time, we will see how to make recursive version faster.

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```
def count_factors(n):
    factors = 0
    for k in range(1, n + 1):
        if n % k == 0:
            factors += 1
    return factors
```

```
sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
    if n % k == 0:
        factors += 2
    k += 1
if k * k == n:
    factors += 1
return factors
```

| Time | Count Factors
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>$\Theta(\sqrt{n})$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

Exponentiation

Goal: one more multiplication lets us double the problem size.

```
def exp(b, n):
    if n == 0:
        return 1
    return b * exp(b, n - 1)
```

```
def square(x):
    return x * x
```

```
def fast_exp(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(fast_exp(b, n // 2))
    else:
        return b * fast_exp(b, n - 1)
```

Table:

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments

```
def count_factors(n):
    factors = 0
    for k in range(1, n + 1):
        if n % k == 0:
            factors += 1
    return factors
```

```
sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
    if n % k == 0:
        factors += 2
    k += 1
if k * k == n:
    factors += 1
return factors
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>$\Theta(\sqrt{n})$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Fibonacci Memory Consumption

Assume we have reached this step

Has an active environment
Can be reclaimed
Hasn’t yet been created

Assume we have reached this step

Iteration vs. Tree Recursion

Iterative and recursive implementations are not the same.

def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n - 1):
 prev, curr = curr, prev + curr
 return curr

def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n - 2) + fib(n - 1)

Next time, we will see how to make recursive version faster.

Comparing Orders of Growth (n is problem size)

<table>
<thead>
<tr>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>$\Theta(\phi^n)$</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases $R(n)$ by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments $R(n)$.

Constant. The problem size doesn’t matter.