Announcements

- HW8 due tonight at 7pm
- Midterm 2 Thursday at 7pm
 - See course website for more information

Tree Structured Data

Nested Sequences are Hierarchical Structures.

```
((1, 2), (3, 4), 5)
```

Recursive Tree Processing

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))
```

```
def map_tree(tree, fn):
    if type(tree) != tuple:
        return fn(tree)
    return tuple(map_tree(branch, fn)
        for branch in tree)
```

Trees with Internal Node Values

Trees can have values at internal nodes as well as their leaves.

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n - 2)
    right = fib_tree(n - 1)
    return Tree(left.entry + right.entry, left, right)
```
Memoization

Tree recursive functions can compute the same thing many times

Idea: Remember the results that have been computed before

```python
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```

Keys are arguments that map to return values

Same behavior as f, if f is a pure function

Orders of Growth

Iterative, recursive, and memoized implementations are not the same.

```python
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n - 1):
        prev, curr = curr, prev + curr
    return curr

def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n - 2) + fib(n - 1)

fib = memo(fib)
```

Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{2, 3, 4}
>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}
```

Implementing Sets

What we should be able to do with a set:

- Membership testing: Is a value an element of a set?
- Union: Return a set with all elements in set1 or set2
- Intersection: Return a set with any elements in set1 and set2
- Adjunction: Return a set with all elements in s and a value v

```
def empty(s):
    return s is Rlist.empty

def set_contains(s, v):
    if empty(s):
        return False
    elif s.first == v:
        return True
    return set_contains(s.rest, v)
```

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items

This is how we implemented dictionaries

```
def empty(s):
    return s is Rlist.empty

def set_contains(s, v):
    if empty(s):
        return False
    elif s.first == v:
        return True
    return set_contains(s.rest, v)
```
Sets as Unordered Sequences

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>def adjoin_set(s, v):</code></td>
<td>Adds an element to a set and returns the set if the element is already present, otherwise returns a new set with the element added. Time complexity: $\Theta(n)$</td>
</tr>
<tr>
<td><code>def intersect_set(set1, set2):</code></td>
<td>Returns the intersection of two sets. Time complexity: $\Theta(n^2)$</td>
</tr>
<tr>
<td><code>def union_set(set1, set2):</code></td>
<td>Returns the union of two sets. Time complexity: $\Theta(n^2)$</td>
</tr>
</tbody>
</table>

- **Time order of growth**
 - $\Theta(n)$: The size of the set
 - $\Theta(n^2)$: Assume sets are the same size