Announcements

- HW12 due Wednesday

- Scheme project, contest out
Review: Program Generator
A computer program is just a sequence of bits
Review: Program Generator

A computer program is just a sequence of bits

It is possible to enumerate all bit sequences
A computer program is just a sequence of bits

It is possible to enumerate all bit sequences

```python
from itertools import product

def bitstrings():
    size = 0
    while True:
        tuples = product(('0', '1'), repeat=size)
        for elem in tuples:
            yield ''.join(elem)
        size += 1
```
A computer program is just a sequence of bits.

It is possible to enumerate all bit sequences.

```python
from itertools import product

def bitstrings():
    size = 0
    while True:
        tuples = product(('0', '1'), repeat=size)
        for elem in tuples:
            yield ''.join(elem)
        size += 1

>>> [next(bs) for _ in range(0, 10)]
```
A computer program is just a sequence of bits.

It is possible to enumerate all bit sequences:

```python
from itertools import product

def bitstrings():
    size = 0
    while True:
        tuples = product(('0', '1'), repeat=size)
        for elem in tuples:
            yield ''.join(elem)
        size += 1

>>> [next(bs) for _ in range(0, 10)]
['', '0', '1', '00', '01', '10', '11', '000', '001', '010']
```
Review: Function Streams
Given a stream of 1-argument functions, we can construct a function that is not in the stream, *assuming that all functions in the stream terminate*.
Given a stream of 1-argument functions, we can construct a function that is not in the stream, *assuming that all functions in the stream terminate*

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```
Given a stream of 1-argument functions, we can construct a function that is not in the stream, *assuming that all functions in the stream terminate*.

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

```
[F] T T T T F T F T F . . .
T [T] F F F F F T F T . . .
T F [T] F T F T F T . . .
T F F [T] T F F T F T . . .
T F T T T [F] T F T F T . . .
F F F F T [F] F F T T . . .
T F T F F F [F] T T T . . .
F T F T T F T [F] F T . . .
T F T F F T T F [F] T . . .
F T T T T T T T [F] . . .
. . .
```
Review: Function Streams

Given a stream of 1-argument functions, we can construct a function that is not in the stream, assuming that all functions in the stream terminate.

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

```
[F] T T T T F T F T F . . .
T [T] F F F F F T F T . . .
T F [T] F T F T F T . . .
T F F [T] T F F T F T . . .
T F T T [F] T F T F T . . .
F F F F F T [F] F F T T . . .
T F T F F F [F] T T T . . .
F T F T T F T [F] F T . . .
T F T F F T T F [F] T . . .
F T T T T T T T [F] . . .
```

Functions
Review: Function Streams

Given a stream of 1-argument functions, we can construct a function that is not in the stream, *assuming that all functions in the stream terminate*

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

<table>
<thead>
<tr>
<th>Functions</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F] T T T T T F T F T F . . .</td>
<td></td>
</tr>
<tr>
<td>T [T] F F F F F T F T T . . .</td>
<td></td>
</tr>
<tr>
<td>T F [T] F T F T F T T T . . .</td>
<td></td>
</tr>
<tr>
<td>T F F [T] T F F T F T T . . .</td>
<td></td>
</tr>
<tr>
<td>T F T T T [F] T F T F T T . . .</td>
<td></td>
</tr>
<tr>
<td>F F F F F T [F] F F T T T . . .</td>
<td></td>
</tr>
<tr>
<td>T F T F F F [F] T T T T . . .</td>
<td></td>
</tr>
<tr>
<td>F T F T T F T [F] F T . . .</td>
<td></td>
</tr>
<tr>
<td>T F T F F T T F [F] T . . .</td>
<td></td>
</tr>
<tr>
<td>F T T T T T T T T [F] . . .</td>
<td></td>
</tr>
</tbody>
</table>
Given a stream of 1-argument functions, we can construct a function that is not in the stream, assuming that all functions in the stream terminate.

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

<table>
<thead>
<tr>
<th>Functions</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F] T T T T T F T F T F . . .</td>
<td></td>
</tr>
<tr>
<td>T [T] F F F F F T F T F . . .</td>
<td></td>
</tr>
<tr>
<td>T F [T] F T F T F T T . . .</td>
<td></td>
</tr>
<tr>
<td>T F F [T] T F F T F T . . .</td>
<td></td>
</tr>
<tr>
<td>T F T T [F] T F T F T . . .</td>
<td></td>
</tr>
<tr>
<td>F F F F F T [F] F F T T . . .</td>
<td></td>
</tr>
<tr>
<td>T F T F F F [F] T T T . . .</td>
<td></td>
</tr>
<tr>
<td>F T F T T F T [F] F T . . .</td>
<td></td>
</tr>
<tr>
<td>T F T F F T T T [F] T . . .</td>
<td></td>
</tr>
<tr>
<td>F T T T T T T T [F] . . .</td>
<td></td>
</tr>
<tr>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>T F F F F T T T T T T . . .</td>
<td></td>
</tr>
</tbody>
</table>
A mathematical function $f(x)$ maps elements from its input domain D to its output range R.
A mathematical function $f(x)$ maps elements from its input domain D to its output range R

\[f : \mathbb{N} \rightarrow \{0, 1\}, \quad f(x) = x^2 \mod 2 \]
A mathematical function $f(x)$ maps elements from its input domain D to its output range R

$$f : \mathbb{N} \rightarrow \{0, 1\}, \quad f(x) = x^2 \mod 2$$

A Python function `func computes` a mathematical function f if the following conditions hold:
A mathematical function $f(x)$ maps elements from its input *domain* D to its output *range* R.

$$f : \mathbb{N} \to \{0, 1\}, \quad f(x) = x^2 \mod 2$$

A Python function `func` *computes* a mathematical function f if the following conditions hold:

- `func` has the same number of parameters as inputs to f.
A mathematical function $f(x)$ maps elements from its input domain D to its output range R

$$f : \mathbb{N} \rightarrow \{0, 1\}, \quad f(x) = x^2 \mod 2$$

A Python function `func` computes a mathematical function f if the following conditions hold:

- `func` has the same number of parameters as inputs to f
- `func` terminates on every input in D
A mathematical function $f(x)$ maps elements from its input domain D to its output range R

$$f : \mathbb{N} \rightarrow \{0, 1\}, \ f(x) = x^2 \mod 2$$

A Python function `func` computes a mathematical function f if the following conditions hold:

- `func` has the same number of parameters as inputs to f
- `func` terminates on every input in D
- The return value of `func(x)` is the same as $f(x)$ for all x in D
A mathematical function $f(x)$ maps elements from its input *domain* D to its output *range* R

$$f : \mathbb{N} \rightarrow \{0, 1\}, \quad f(x) = x^2 \mod 2$$

A Python function `func` *computes* a mathematical function f if the following conditions hold:

- `func` has the same number of parameters as inputs to f
- `func` terminates on every input in D
- The return value of `func(x)` is the same as $f(x)$ for all x in D

```python
def func(x):
    return (x * x) % 2
```
A mathematical function $f(x)$ maps elements from its input domain D to its output range R

$$f : \mathbb{N} \to \{0, 1\}, \ f(x) = x^2 \mod 2$$

A Python function `func` computes a mathematical function f if the following conditions hold:

- `func` has the same number of parameters as inputs to f
- `func` terminates on every input in D
- The return value of `func(x)` is the same as $f(x)$ for all x in D

```python
def func(x):
    return (x * x) % 2
```

A mathematical function f is *computable* if there exists a program (i.e. a Python function) `func` that computes it
Are all functions computable?
Computability

Are all functions computable?

More specifically, we hate infinite loops
Are all functions computable?

More specifically, we hate infinite loops

So if we have a program that computes the following function, we can run it on our programs to determine if they have infinite loops:
Are all functions computable?

More specifically, we hate infinite loops

So if we have a program that computes the following function, we can run it on our programs to determine if they have infinite loops:

\[
\text{haltsonallinputs} : \text{Programs} \rightarrow \{0, 1\},
\]

\[
\text{haltsonallinputs}(P) = \begin{cases}
1 & \text{if } P \text{ halts on all inputs} \\
0 & \text{otherwise}
\end{cases}
\]
Halts
Halts

Let’s be less ambitious; we’ll take a program that computes whether or not another program halts on a specific non-negative integer input:
Halts

Let’s be less ambitious; we’ll take a program that computes whether or not another program halts on a specific non-negative integer input:

\[
halts : \text{Programs} \times \mathbb{N} \to \{0, 1\},
\]

\[
halts(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]
Halts

Let’s be less ambitious; we’ll take a program that computes whether or not another program halts on a specific non-negative integer input:

\[
\text{halts} : \text{Programs} \times \mathbb{N} \rightarrow \{0, 1\}, \text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

Is this function computable?
Halts

Let’s be less ambitious; we’ll take a program that computes whether or not another program halts on a specific non-negative integer input:

\[
\text{halts} : \text{Programs} \times \mathbb{N} \rightarrow \{0, 1\},
\]

\[
\text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

Is this function computable?

It’s not as simple as just running the program \(P \) on \(n \) to see if it terminates
Halts

Let’s be less ambitious; we’ll take a program that computes whether or not another program halts on a specific non-negative integer input:

\[
\text{halts} : Programs \times \mathbb{N} \rightarrow \{0, 1\},
\]

\[
\text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

Is this function computable?

It’s not as simple as just running the program \(P \) on \(n \) to see if it terminates.

How long do we let it run before deciding that it won’t terminate?
Halts

Let’s be less ambitious; we’ll take a program that computes whether or not another program halts on a specific non-negative integer input:

\[
\text{halts : Programs } \times \mathbb{N} \rightarrow \{0, 1\},
\]

\[
\text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

Is this function computable?

It’s not as simple as just running the program \(P \) on \(n \) to see if it terminates.

How long do we let it run before deciding that it won’t terminate?

However long we let it run before declaring it that it won’t terminate, it might just need a little more time to finish its computation.
Halts

Let’s be less ambitious; we’ll take a program that computes whether or not another program halts on a specific non-negative integer input:

\[
\text{halts} : \text{Programs} \times \mathbb{N} \to \{0, 1\}, \\
\text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

Is this function computable?

It’s not as simple as just running the program \(P \) on \(n \) to see if it terminates.

How long do we let it run before deciding that it won’t terminate?

However long we let it run before declaring it that it won’t terminate, it might just need a little more time to finish its computation.

Thus, we have to do something more clever, analyzing the program itself.
Turing
Let’s assume that we have a Python function `halts` that computes the mathematical function `halts`, written by someone more clever than us.
Let’s assume that we have a Python function `halts` that computes the mathematical function `halts`, written by someone more clever than us.

Remember, we can pass a function itself as its argument. Thus, we can consider `halts(f, f)`; in other words, does function `f` halt when given itself as an argument? (This is just a thought experiment.)
Let’s assume that we have a Python function `halts` that computes the mathematical function $halts$, written by someone more clever than us.

Remember, we can pass a function itself as its argument. Thus, we can consider $halts(f, f)$; in other words, does function f halt when given itself as an argument? (This is just a thought experiment.)

We can then define a new function, `turing`, which takes in 1 argument.
Let’s assume that we have a Python function \texttt{halts} that computes the mathematical function \textit{halts}, written by someone more clever than us.

Remember, we can pass a function itself as its argument. Thus, we can consider \texttt{halts(f, f)}; in other words, does function \texttt{f} halt when given itself as an argument? (This is just a thought experiment.)

We can then define a new function, \texttt{turing}, which takes in 1 argument.

\begin{verbatim}
def turing(f):
 if halts(f, f):
 while True: # infinite loop
 pass
 else:
 return True # halts
\end{verbatim}
Let’s assume that we have a Python function `halts` that computes the mathematical function \(\text{halts} \), written by someone more clever than us.

Remember, we can pass a function itself as its argument. Thus, we can consider \(\text{halts}(f, f) \); in other words, does function \(f \) halt when given itself as an argument? (This is just a thought experiment.)

We can then define a new function, `turing`, which takes in 1 argument.

```python
def turing(f):
    if halts(f, f):
        while True:    # infinite loop
            pass
    else:
        return True  # halts
```

`turing` will go into an infinite loop if \(f \) halts when given itself as an argument. Otherwise, `turing` returns `True`.
def turing(f):
 if halts(f, f):
 while True: # infinite loop
 pass
 else:
 return True # halts
def turing(f):
 if halts(f, f):
 while True: # infinite loop
 pass
 else:
 return True # halts

* what?
Turing... what?

```python
def turing(f):
    if halts(f, f):
        while True:  # infinite loop
            pass
    else:
        return True  # halts

turing(turing)  # * what?
```

If this sounds fishy, it should. Should the call `turing(turing)` halt or go into an infinite loop?
def turing(f):
 if halts(f, f):
 while True: # infinite loop
 pass
 else:
 return True # halts

turing(turing) # * what?

If this sounds fishy, it should. Should the call \texttt{turing(turing)} halt or go into an infinite loop?

- \texttt{turing(turing)} loops \rightarrow \texttt{halts(turing, turing)} returns true
def turing(f):
 if halts(f, f):
 while True:
 # infinite loop
 pass
 else:
 return True # halts

turing(turing) # * what?

If this sounds fishy, it should. Should the call \texttt{turing(turing)} halt or go into an infinite loop?

- \texttt{turing(turing)} loops \Rightarrow \texttt{halts(turing, turing)} returns true
 - However, \texttt{turing(turing)} should have halted
def turing(f):
 if halts(f, f):
 while True:
 pass
 else:
 return True

turing(turing)

If this sounds fishy, it should. Should the call \texttt{turing(turing)} halt or go into an infinite loop?

- \texttt{turing(turing)} loops \rightarrow \texttt{halts(turing, turing)} returns true
- However, \texttt{turing(turing)} should have halted
- \texttt{turing(turing)} halts \rightarrow \texttt{halts(turing, turing)} returns false
def turing(f):
 if halts(f, f):
 while True:
 pass
 else:
 return True # halts

If this sounds fishy, it should. Should the call \texttt{turing(turing)} halt or go into an infinite loop?

- \texttt{turing(turing)} loops \rightarrow \texttt{halts(turing, turing)} returns true
 - However, \texttt{turing(turing)} should have halted

- \texttt{turing(turing)} halts \rightarrow \texttt{halts(turing, turing)} returns false
 - However, \texttt{turing(turing)} should not have halted
def turing(f):
 if halts(f, f):
 while True: # infinite loop
 pass
 else:
 return True # halts

print(turing(turing)) # * what?

If this sounds fishy, it should. Should the call `turing(turing)` halt or go into an infinite loop?

• `turing(turing)` loops \rightarrow `halts(turing, turing)` returns true
 • However, `turing(turing)` should have halted

• `turing(turing)` halts \rightarrow `halts(turing, turing)` returns false
 • However, `turing(turing)` should not have halted

We have a contradiction! Our assumption that `halts` exists is false.
Bitstrings and Functions
Let’s develop another proof, assuming that we have a \texttt{halts} program that computes the mathematical function \textit{halts}
Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`.

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream.
Let’s develop another proof, assuming that we have a \texttt{halts} program that computes the mathematical function \texttt{halts}

Let’s create a stream of all 1-argument Python functions, then use \texttt{halts} to filter out non-terminating programs from that stream

Assume we have the following Python functions:
Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`.

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream.

Assume we have the following Python functions:

```python
def is_valid_python_function(bitstring):
    """Determine whether or not a bitstring represents a syntactically valid 1-argument Python function.""
```
Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`.

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream.

Assume we have the following Python functions:

```python
def is_valid_python_function(bitstring):
    """Determine whether or not a bitstring represents a syntactically valid 1-argument Python function.""

def bitstring_to_python_function(bitstring):
    """Coerce a bitstring representation of a Python function to the function itself."""
```
Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream
Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`.

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream.

Then the following produces all valid 1-argument Python functions:
Let’s develop another proof, assuming that we have a \texttt{halts} program that computes the mathematical function \textit{halts}

Let’s create a stream of all 1-argument Python functions, then use \texttt{halts} to filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

\begin{verbatim}
def function_stream():
\end{verbatim}
Bitstrings and Functions

Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`.

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream.

Then the following produces all valid 1-argument Python functions:

```python
def function_stream():
    """Return a stream of all valid 1-argument Python functions."""
```
Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

```python
def function_stream():
    """Return a stream of all valid 1-argument Python functions.""
    bitstring_stream = iterator_to_stream(bitstrings())
```
Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream.

Then the following produces all valid 1-argument Python functions:

```python
def function_stream():
    """Return a stream of all valid 1-argument Python functions."""
    bitstring_stream = iterator_to_stream(bitstrings())
```
Bitstrings and Functions

Let’s develop another proof, assuming that we have a \texttt{halts} program that computes the mathematical function \textit{halts}.

Let’s create a stream of all 1-argument Python functions, then use \texttt{halts} to filter out non-terminating programs from that stream.

Then the following produces all valid 1-argument Python functions:

```python
def function_stream():
    """Return a stream of all valid 1-argument Python functions.""
    bitstring_stream = \texttt{iterator_to_stream(bitstrings())}
    valid_stream = \texttt{filter_stream(is_valid_python_function, bitstring_stream)}
```

\textit{On HW12}

Let’s develop another proof, assuming that we have a `halts` program that computes the mathematical function `halts`

Let’s create a stream of all 1-argument Python functions, then use `halts` to filter out non-terminating programs from that stream

Then the following produces all valid 1-argument Python functions:

```python
def function_stream():
    """Return a stream of all valid 1-argument Python functions.""
    bitstring_stream = iterator_to_stream(bitstrings())
    valid_stream = filter_stream(is_valid_python_function, bitstring_stream)
    return map_stream(bitstring_to_python_function, valid_stream)
```
Filtering Out Non-Terminating Programs
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.
Filtering Out Non-Terminating Programs

With \textit{halts}, we can’t filter out programs that don’t halt on all input.
But we can filter out programs that don’t halt on a specific input.
Filtering Out Non-Terminating Programs

With \textit{halts}, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
```
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0
```
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0
    def halt_checker(fn):
```
Filtering Out Non-Terminating Programs

With \texttt{halts}, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0
    def halt_checker(fn):
        nonlocal index
```
Filtering Out Non-Terminating Programs

With \texttt{halts}, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0
    def halt_checker(fn):
        nonlocal index
        if halts(fn, index):
```
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0
    def halt_checker(fn):
        nonlocal index
        if halts(fn, index):
            index += 1
```
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs:

```python
def make_halt_checker():
    index = 0
    def halt_checker(fn):
        nonlocal index
        if halts(fn, index):
            index += 1
        return True
```
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0

def halt_checker(fn):
    nonlocal index
    if halts(fn, index):
        index += 1
        return True
    return False
```
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0
    def halt_checker(fn):
        nonlocal index
        if halts(fn, index):
            index += 1
            return True
        return False
    return halt_checker
```
Filtering Out Non-Terminating Programs

With `halts`, we can’t filter out programs that don’t halt on all input.

But we can filter out programs that don’t halt on a specific input.

Specifically, let’s make sure that a program halts on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0
    def halt_checker(fn):
        nonlocal index
        if halts(fn, index):
            index += 1
            return True
        return False
    return halt_checker

programs = filter_stream(make_halt_checker(), function_stream())
```
Developing a Contradiction
We now have a stream of programs that halt when given their own index as input.
Developing a Contradiction

We now have a stream of programs that halt when given their own index as input

\[
\text{programs} = \text{filter_stream} (\text{make_halt_checker}(), \\
\quad \text{function_stream}())
\]
Developing a Contradiction

We now have a stream of programs that halt when given their own index as input:

```
programs = filter_stream(make_halt_checker(),
                        function_stream())
```

Recall the following function that produces a function that is not in a given stream:
We now have a stream of programs that halt when given their own index as input

```python
programs = filter_stream(make_halt_checker(),
                        function_stream())
```

Recall the following function that produces a function that is not in a given stream:

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```
Developing a Contradiction

We now have a stream of programs that halt when given their own index as input:

```
programs = filter_stream(make_halt_checker(),
                        function_stream())
```

Recall the following function that produces a function that is not in a given stream:

```
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

Consider the following:
Developing a Contradiction

We now have a stream of programs that halt when given their own index as input

\[
\text{programs} = \text{filter_stream}(\text{make_halt_checker}(), \text{function_stream}())
\]

Recall the following function that produces a function that is not in a given stream:

\[
\text{def func_not_in_stream}(s):
 \quad \text{return lambda n: not sn}
\]

Consider the following:

\[
\text{church} = \text{func_not_in_stream}(\text{programs})
\]
Developing a Contradiction

We now have a stream of programs that halt when given their own index as input.

\[
\text{programs} = \text{filter_stream}(\text{make_halt_checker}(), \\
\quad \text{function_stream}())
\]

Recall the following function that produces a function that is not in a given stream:

\[
\text{def func_not_in_stream}(s): \\
\quad \text{return lambda n: not s[n]}(n)
\]

Consider the following:

\[
\text{church} = \text{func_not_in_stream}(\text{programs})
\]

Does \text{church} appear anywhere in \text{programs}?
Developing a Contradiction

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)

church = func_not_in_stream(programs)

Does church appear anywhere in programs?
```
def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input
def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input.

Thus, church halts on all inputs \(n \), since it calls the \(n \)th element in programs on \(n \).
def func_not_in_stream(s):
 return lambda n: not sn

chuch = func_not_in_stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input

Thus, church halts on all inputs n, since it calls the nth element in programs on n

So halt_checker returns true on church, which means that church is in programs
Developing a Contradiction

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

```python
church = func_not_in_stream(programs)
```

Does `church` appear anywhere in `programs`?

Every element in `programs` halts when given its own index as input.

Thus, `church` halts on all inputs `n`, since it calls the `n`th element in `programs` on `n`.

So `halt_checker` returns true on `church`, which means that `church` is in `programs`.

If `church` is in `programs`, it has an index `m`; so what does `church(m)` do?
def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input.

Thus, church halts on all inputs n, since it calls the nth element in programs on n.

If church is in programs, it has an index m; so what does church(m) do?
def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input.

Thus, church halts on all inputs n, since it calls the nth element in programs on n.

If church is in programs, it has an index m; so what does church(m) do?

It calls the mth element in programs, which is church itself, on m.
def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)

Does church appear anywhere in programs?

Every element in programs halts when given its own index as input

Thus, church halts on all inputs \(n \), since it calls the \(n \)th element in programs on \(n \)

If church is in programs, it has an index \(m \); so what does church(\(m \)) do?

It calls the \(m \)th element in programs, which is church itself, on \(m \)

This results in an infinite loop, which means halt_checker will return false on church, since it does not halt given its own index
Developing a Contradiction

def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)
Developing a Contradiction

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)

church = func_not_in_stream(programs)

We have a contradiction!
```
Developing a Contradiction

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)

church = func_not_in_stream(programs)

We have a contradiction!

halt_checker(church) returns true, which means that church is in programs
```
def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)

We have a contradiction!

halt_checker(church) returns true, which means that church is in programs

But if church is in programs, then church(m), where m is church’s index in programs, is an infinite loop, so halt_checker(church) returns false
def func_not_in_stream(s):
 return lambda n: not sn

church = func_not_in_stream(programs)

We have a contradiction!

halt_checker(church) returns true, which means that church is in programs

But if church is in programs, then church(m), where m is church’s index in programs, is an infinite loop, so halt_checker(church) returns false

So we made a false assumption somewhere
False Assumption
False Assumption

We assumed we had the following Python functions:
False Assumption

We assumed we had the following Python functions:

• `halts`
False Assumption

We assumed we had the following Python functions:

• `halts`
• `is_valid_python_function`
False Assumption

We assumed we had the following Python functions:

• `halts`
• `is_valid_python_function`
• `bitstring_to_python_function`
False Assumption

We assumed we had the following Python functions:

• `halts`
• `is_valid_python_function`
• `bitstring_to_python_function`

Everything else we wrote ourselves
False Assumption

We assumed we had the following Python functions:

- `halts`
- `is_valid_python_function`
- `bitstring_to_python_function`

Everything else we wrote ourselves

The latter two functions can be built using components of the interpreter.
False Assumption

We assumed we had the following Python functions:

• `halts`
• `is_valid_python_function`
• `bitstring_to_python_function`

Everything else we wrote ourselves

The latter two functions can be built using components of the interpreter

Thus, it is our assumption that there is a Python function that computes `halts` that is invalid
False Assumption

We assumed we had the following Python functions:

- `halts`
- `is_valid_python_function`
- `bitstring_to_python_function`

Everything else we wrote ourselves.

The latter two functions can be built using components of the interpreter.

Thus, it is our assumption that there is a Python function that computes `halts` that is invalid.

\[
\text{halts} : \text{Programs} \times \mathbb{N} \rightarrow \{0, 1\},
\]

\[
\text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]
The Halting Problem
The Halting Problem

The question of whether or not a program halts on a given input is known as *the halting problem*.
The Halting Problem

The question of whether or not a program halts on a given input is known as the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a computer.
The Halting Problem

The question of whether or not a program halts on a given input is known as the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a computer.

That is, the mathematical function halts is uncomputable.
The Halting Problem

The question of whether or not a program halts on a given input is known as the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a computer.

That is, the mathematical function $halts$ is uncomputable.

$$halts : Programs \times \mathbb{N} \rightarrow \{0, 1\},$$

$$halts(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}$$
The Halting Problem

The question of whether or not a program halts on a given input is known as the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a computer.

That is, the mathematical function \(\text{halts} \) is uncomputable

\[
\text{halts} : \text{Programs} \times \mathbb{N} \to \{0, 1\},
\]

\[
\text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

We proved that \(\text{halts} \) is uncomputable in Python, but our reasoning applies to all languages.
The Halting Problem

The question of whether or not a program halts on a given input is known as the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a computer.

That is, the mathematical function $halts$ is uncomputable:

$$halts : Programs \times \mathbb{N} \rightarrow \{0, 1\},$$

$$halts(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}$$

We proved that $halts$ is uncomputable in Python, but our reasoning applies to all languages.

It is a fundamental limitation of all computers and programming languages.
Uncomputable Functions

It gets worse; not only can we not determine programatically whether or not a given program halts, we can’t determine *anything* “interesting” about the *behavior* of a program in general.
Uncomputable Functions

It gets worse; not only can we not determine programmatically whether or not a given program halts, we can’t determine *anything* “interesting” about the *behavior* of a program in general

For example, suppose we had a program `prints_something` that determines whether or not a given program prints something to the screen when run on a specific input:
Uncomputable Functions

It gets worse; not only can we not determine programmatically whether or not a given program halts, we can’t determine *anything* “interesting” about the *behavior* of a program in general.

For example, suppose we had a program `prints_something` that determines whether or not a given program prints something to the screen when run on a specific input:

Then we can write `halts`:
Uncomputable Functions

It gets worse; not only can we not determine programmatically whether or not a given program halts, we can’t determine anything “interesting” about the behavior of a program in general.

For example, suppose we had a program `prints_something` that determines whether or not a given program prints something to the screen when run on a specific input:

Then we can write `halts`:

```python
def halts(fn, i):
```
Uncomputable Functions

It gets worse; not only can we not determine programatically whether or not a given program halts, we can’t determine anything “interesting” about the behavior of a program in general.

For example, suppose we had a program `prints_something` that determines whether or not a given program prints something to the screen when run on a specific input:

Then we can write `halts`:

```python
def halts(fn, i):
    delete all print calls from fn
```
Uncomputable Functions

It gets worse; not only can we not determine programatically whether or not a given program halts, we can’t determine anything “interesting” about the behavior of a program in general.

For example, suppose we had a program `prints_something` that determines whether or not a given program prints something to the screen when run on a specific input:

Then we can write `halts`:

```python
def halts(fn, i):
    delete all print calls from fn
    replace all returns in fn with prints
```
Uncomputable Functions

It gets worse; not only can we not determine programmatically whether or not a given program halts, we can’t determine anything “interesting” about the behavior of a program in general.

For example, suppose we had a program \texttt{prints_something} that determines whether or not a given program prints something to the screen when run on a specific input:

Then we can write \texttt{halts}:

```python
def halts(fn, i):
    delete all print calls from fn
    replace all returns in fn with prints
    return prints\_something(fn, i)
```
It gets worse; not only can we not determine programmatically whether or not a given program halts, we can’t determine *anything* “interesting” about the *behavior* of a program in general.

For example, suppose we had a program `prints_something` that determines whether or not a given program prints something to the screen when run on a specific input:

Then we can write `halts`:

```python
def halts(fn, i):
    delete all print calls from fn
    replace all returns in fn with prints
    return prints_something(fn, i)
```

Since we know we can’t write `halts`, our assumption that we can write `prints_something` is false.
Consequences
There are vast consequences from the impossibility of computing \textit{halts}, or any other sufficiently interesting mathematical functions on programs.
Consequences

There are vast consequences from the impossibility of computing \textit{halts}, or any other sufficiently interesting mathematical functions on programs.

The best we can do is approximation.
Consequences

There are vast consequences from the impossibility of computing halts, or any other sufficiently interesting mathematical functions on programs.

The best we can do is approximation.

For example, perfect anti-virus software is impossible.
Consequences

There are vast consequences from the impossibility of computing *halts*, or any other sufficiently interesting mathematical functions on programs

The best we can do is approximation

For example, perfect anti-virus software is impossible
- Anti-virus software must either miss some viruses (false negatives), mark some innocent programs as viruses (false positives), or fail to terminate on others
Consequences

There are vast consequences from the impossibility of computing *halts*, or any other sufficiently interesting mathematical functions on programs.

The best we can do is approximation.

For example, perfect anti-virus software is impossible.

- Anti-virus software must either miss some viruses (false negatives), mark some innocent programs as viruses (false positives), or fail to terminate on others.

We can’t write perfect security analyzers, optimizing compilers, etc.
Incompleteness Theorem
In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either *incomplete* or *inconsistent*.
Incompleteness Theorem

In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either *incomplete* or *inconsistent*.

- A system is *incomplete* if there are true facts that cannot be proven.
Incompleteness Theorem

In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either incomplete or inconsistent.

- A system is *incomplete* if there are true facts that cannot be proven.
- A system is *inconsistent* if there are false claims that can be proven.
Incompleteness Theorem

In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either *incomplete* or *inconsistent*

- A system is *incomplete* if there are true facts that cannot be proven
- A system is *inconsistent* if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits
Incompleteness Theorem

In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either *incomplete* or *inconsistent*

- A system is *incomplete* if there are true facts that cannot be proven
- A system is *inconsistent* if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits
- We can generate all proofs the same way we generated all programs
In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either *incomplete* or *inconsistent*

- A system is *incomplete* if there are true facts that cannot be proven
- A system is *inconsistent* if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

- We can generate all proofs the same way we generated all programs

It is also possible to check the validity of a proof using a computer
Incompleteness Theorem

In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either *incomplete* or *inconsistent*:

- A system is *incomplete* if there are true facts that cannot be proven.
- A system is *inconsistent* if there are false claims that can be proven.

A proof is just a sequence of statements, which can be represented as bits:

- We can generate all proofs the same way we generated all programs.

It is also possible to check the validity of a proof using a computer:

- Given a finite set of axioms and inference rules, a program can check that each statement in a proof follows from the previous ones.
In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either incomplete or inconsistent.

- A system is incomplete if there are true facts that cannot be proven.
- A system is inconsistent if there are false claims that can be proven.

A proof is just a sequence of statements, which can be represented as bits.

- We can generate all proofs the same way we generated all programs.

It is also possible to check the validity of a proof using a computer.

- Given a finite set of axioms and inference rules, a program can check that each statement in a proof follows from the previous ones.

Thus, if a valid proof exists for a mathematical formula, then a computer can find it.
Incompleteness Theorem
Incompleteness Theorem

Given a sufficiently powerful mathematical system, we can write the following formula, which is a predicate form of the *halts* function:
Incompleteness Theorem

Given a sufficiently powerful mathematical system, we can write the following formula, which is a predicate form of the \textit{halts} function:

\[H(P, n) = \text{“program } P \text{ halts on input } n” \]
Incompleteness Theorem

Given a sufficiently powerful mathematical system, we can write the following formula, which is a predicate form of the *halts* function:

\[
H(P, n) = \text{“program } P \text{ halts on input } n\text{”}
\]

If \(H(P, n) \) is provable or disprovable for all \(P \) and \(n \), then we can write a program to prove or disprove it by generating all proofs and checking each one to see if it proves or disproves \(H(P, n) \).
Incompleteness Theorem

Given a sufficiently powerful mathematical system, we can write the following formula, which is a predicate form of the *halts* function:

\[H(P, n) = \text{“program } P \text{ halts on input } n\” \]

If \(H(P, n) \) is provable or disprovable for all \(P \) and \(n \), then we can write a program to prove or disprove it by generating all proofs and checking each one to see if it proves or disproves \(H(P, n) \)

But then this program would solve the halting problem, which is impossible
Incompleteness Theorem

Given a sufficiently powerful mathematical system, we can write the following formula, which is a predicate form of the *halts* function:

\[
H(P, n) = \text{“program } P \text{ halts on input } n\text{”}
\]

If \(H(P, n)\) is provable or disprovable for all \(P\) and \(n\), then we can write a program to prove or disprove it by generating all proofs and checking each one to see if it proves or disproves \(H(P, n)\)

But then this program would solve the halting problem, which is impossible

Thus, there must be values of \(P\) and \(n\) for which \(H(P, n)\) is neither provable nor disprovable, or for which an incorrect result can be proven
Incompleteness Theorem

Given a sufficiently powerful mathematical system, we can write the following formula, which is a predicate form of the halts function:

\[H(P, n) = \text{“program } P \text{ halts on input } n” \]

If \(H(P, n) \) is provable or disprovable for all \(P \) and \(n \), then we can write a program to prove or disprove it by generating all proofs and checking each one to see if it proves or disproves \(H(P, n) \)

But then this program would solve the halting problem, which is impossible

Thus, there must be values of \(P \) and \(n \) for which \(H(P, n) \) is neither provable nor disprovable, or for which an incorrect result can be proven

Thus, there are fundamental limitations not only to computation, but to mathematics itself!
Interpretation in Python
eval: Evaluates an expression in the current environment and returns the result. Doing so may affect the environment.
Interpretation in Python

eval: Evaluates an expression in the current environment and returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing so may affect the environment.
Interpretation in Python

eval: Evaluates an expression in the current environment and returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing so may affect the environment.

```python
eval('2 + 2')
```
Interpretation in Python

eval: Evaluates an expression in the current environment and returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing so may affect the environment.

```python
eval('2 + 2')
```

```python
exec('def square(x): return x * x')
```
Interpretation in Python

eval: Evaluates an expression in the current environment and returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing so may affect the environment.

```python
eval('2 + 2')

exec('def square(x): return x * x')
```

os.system('python <file>'): Directs the operating system to invoke a new instance of the Python interpreter.