Review: Program Generator

A computer program is just a sequence of bits.

It is possible to enumerate all bit sequences:

```python
from itertools import product

def bitstrings():
    size = 0
    while True:
        tuples = product(('0', '1'), repeat=size)
        for elem in tuples:
            yield ''.join(elem)
        size += 1

>>> next(bs) for _ in range(0, 10)]
['', '0', '1', '00', '01', '10', '11', '000', '001', '010']
```

Review: Function Streams

Given a stream of 1-argument functions, we can construct a function that is not in the stream, assuming that all functions in the stream terminate:

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

Review: Programs and Mathematical Functions

A mathematical function \(f(x) \) maps elements from its input domain \(D \) to its output range \(R \):

\[
f : \mathbb{N} \rightarrow \{0, 1\}, \quad f(x) = x^2 \mod 2
\]

A Python function `func` computes a mathematical function \(f \) if the following conditions hold:

- `func` has the same number of parameters as inputs to \(f \)
- `func` terminates on every input in \(D \)
- The return value of `func(x)` is the same as \(f(x) \) for all \(x \) in \(D \)

```python
def func(x):
    return (x * x) % 2
```

Computability

Are all functions computable?

More specifically, we hate infinite loops.

So if we have a program that computes the following function, we can run it on our programs to determine if they have infinite loops:

\[
haltscanning : \text{Programs} \rightarrow \{0, 1\},
\]

\[
haltscanning(P) = \begin{cases}
1 & \text{if } P \text{ halts on all inputs} \\
0 & \text{otherwise}
\end{cases}
\]
Halts

Let's be less ambitious; we'll take a program that computes whether or not another program halts on a specific non-negative integer input:

\[
\text{halts} : \text{Programs} \times \mathbb{N} \rightarrow \{0, 1\}, \\
\text{halts}(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

Is this function computable?

It's not as simple as just running the program \(P\) on \(n\) to see if it terminates.

How long do we let it run before deciding that it won't terminate?

However long we let it run before declaring it that it won't terminate, it might just need a little more time to finish its computation.

Thus, we have to do something more clever, analyzing the program itself.

Turing

Let's assume that we have a Python function \texttt{halts} that computes the mathematical function \texttt{halts}, written by someone more clever than us.

Remember, we can pass a function itself as its argument. Thus, we can consider \texttt{halts(f, f)}; in other words, does function \(f\) halt when given itself as an argument? (This is just a thought experiment.)

We can then define a new function, \texttt{turing}, which takes in 1 argument.

```python
def turing(f):
    if halts(f, f):
        while True:
            pass
    else:
        return True

turing will go into an infinite loop if \(f\) halts when given itself as an argument. Otherwise, \(turing\) returns \(True\).
```

Turing... what?

```python
def turing(f):
    if halts(f, f):
        while True:
            pass
    else:
        return True

turing(turing) # * what?
```

If this sounds fishy, it should. Should the call \(turing(turing)\) halt or go into an infinite loop?

* \(turing(turing)\) loops \(\Rightarrow\) \(halts(turing, turing)\) returns true
 * However, \(turing(turing)\) should have halted
* \(turing(turing)\) halts \(\Rightarrow\) \(halts(turing, turing)\) returns false
 * However, \(turing(turing)\) should not have halted

We have a contradiction! Our assumption that \(halts\) exists is false.

Bitstrings and Functions

Let's develop another proof, assuming that we have a \texttt{halts} program that computes the mathematical function \texttt{halts}.

Let's create a stream of all 1-argument Python functions, then use \texttt{halts} to filter out non-terminating programs from that stream.

Assume we have the following Python functions:

```python
def is_valid_python_function(bitstring):
    """Determine whether or not a bitstring represents a syntactically valid 1-argument Python function."""

def bitstring_to_python_function(bitstring):
    """Coerce a bitstring representation of a Python function to the function itself."""
```

Filtering Out Non-Terminating Programs

With \texttt{halts}, we can't filter out programs that don't halt on all input.

But we can filter out programs that don't halt on a specific input.

Specifically, let's make sure that a program \texttt{halts} on its index in the resulting stream of programs.

```python
def make_halt_checker():
    index = 0

def halt_checker(fn):
    nonlocal index
    if halts(fn, index):
        index += 1
        return True
    return False

programs = filter_stream(make_halt_checker(), function_stream())
```
Developing a Contradiction

We now have a stream of programs that halt when given their own index as input:

```python
def func_not_in_stream(s):
    return lambda n: not s[n](n)
```

Consider the following:

- `church = func_not_in_stream(programs)`
- `Does church appear anywhere in programs?`

Thus, `church` halts on all inputs `n`, since it calls the `n`th element in `programs` on `n`.

If `church` is in `programs`, it has an index `m`; so what does `church(m)` do? It calls the `m`th element in `programs`, which is `church` itself, on `m`.

This results in an infinite loop, which means `halt_checker` will return false on `church`, since it does not halt given its own index.

Developing a Contradiction

`church = func_not_in_stream(programs)`

Does `church` appear anywhere in `programs`?

Every element in `programs` halts when given its own index as input.

Thus, `church` halts on all inputs `n`, since it calls the `n`th element in `programs` on `n`.

If `church` is in `programs`, it has an index `m`; so what does `church(m)` do? It calls the `m`th element in `programs`, which is `church` itself, on `m`.

This results in an infinite loop, which means `halt_checker` will return false on `church`, since it does not halt given its own index.

Developing a Contradiction

We have a contradiction!

`halt_checker(church)` returns true, which means that `church` is in `programs`.

But if `church` is in `programs`, then `church(m)`, where `m` is `church`'s index in `programs`, is an infinite loop, so `halt_checker(church)` returns false.

So we made a false assumption somewhere.

False Assumption

We assumed we had the following Python functions:

```python
* halts
* is_valid_python_function
* bitstring_to_python_function
```

Everything else we wrote ourselves.

The latter two functions can be built using components of the interpreter.

Thus, it is our assumption that there is a Python function that computes `halts` that is invalid.

\[
halts: Programs \times N \rightarrow \{0, 1\},
halts(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

The Halting Problem

The question of whether or not a program halts on a given input is known as the halting problem.

In 1936, Alan Turing proved that the halting problem is unsolvable by a computer.

That is, the mathematical function `halts` is uncomputable.

\[
halts : Programs \times N \rightarrow \{0, 1\},
halts(P, n) = \begin{cases}
1 & \text{if } P \text{ halts on input } n \\
0 & \text{otherwise}
\end{cases}
\]

We proved that `halts` is uncomputable in Python, but our reasoning applies to all languages.

It is a fundamental limitation of all computers and programming languages.
Uncomputable Functions

It gets worse; not only can we not determine programatically whether or not a given program halts, we can’t determine anything “interesting” about the behavior of a program in general.

For example, suppose we had a program prints_something that determines whether or not a given program prints something to the screen when run on a specific input:

Then we can write halts:

```python
def halts(fn, i):
    delete all print calls from fn
    replace all returns in fn with prints
    return prints_something(fn, i)
```

Since we know we can’t write halts, our assumption that we can write prints_something is false

Consequences

There are vast consequences from the impossibility of computing halts, or any other sufficiently interesting mathematical functions on programs.

The best we can do is approximation.

For example, perfect anti-virus software is impossible

- Anti-virus software must either miss some viruses (false negatives), mark some innocent programs as viruses (false positives), or fail to terminate on others

We can’t write perfect security analyzers, optimizing compilers, etc.

Incompleteness Theorem

In 1931, Kurt Gödel proved that any mathematical system that contains the theory of non-negative integers must be either incomplete or inconsistent:

- A system is incomplete if there are true facts that cannot be proven
- A system is inconsistent if there are false claims that can be proven

A proof is just a sequence of statements, which can be represented as bits

- We can generate all programs the same way we generated all programs
- It is also possible to check the validity of a proof using a computer
 - Given a finite set of axioms and inference rules, a program can check that each statement in a proof follows from the previous ones

Thus, if a valid proof exists for a mathematical formula, then a computer can find it

Incompleteness Theorem

Given a sufficiently powerful mathematical system, we can write the following formula, which is a predicate form of the halts function:

\[H(P, n) = “\text{program } P \text{ halts on input } n” \]

If \(H(P, n) \) is provable or disprovable for all \(P \) and \(n \), then we can write a program to prove or disprove it by generating all proofs and checking each one to see if it proves or disproves \(H(P, n) \)

But then this program would solve the halting problem, which is impossible

Thus, there must be values of \(P \) and \(n \) for which \(H(P, n) \) is neither provable nor disprovable, or for which an incorrect result can be proven

Thus, there are fundamental limitations not only to computation, but to mathematics itself

Interpretation in Python

eval: Evaluates an expression in the current environment and returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing so may affect the environment.

```python
eval('2 + 2')
exec('def square(x): return x * x')
os.system('python <file>'): Directs the operating system to invoke a new instance of the Python interpreter.