CS61A Lecture 42

Amir Kamil
UC Berkeley
April 29, 2013
Announcements

- HW13 due Wednesday

- Scheme project due tonight!!!

- Scheme contest deadline extended to Friday
MapReduce Execution Model

Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

- Read from *standard input* and write to *standard output*

```python
#!/usr/bin/env python3
import sys
from ucb import main
from mapreduce import emit

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)

for line in sys.stdin:
    emit_vowels(line)
```

Mapper

Tell Unix: this is Python

The `emit` function outputs a key and value as a line of text to standard output

Mapper inputs are lines of text provided to standard input
Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

- Read from *standard input* and write to *standard output*!

Reducer

```python
#!/usr/bin/env python3
import sys
from ucb import main
from mapreduce import emit, group_values_by_key

for key, value_iterator in group_values_by_key(sys.stdin):
    emit(key, sum(value_iterator))
```

Input: lines of text representing key-value pairs, grouped by key

Output: Iterator over (key, value_iterator) pairs that give all values for each key
Parallel Computation Patterns

Not all problems can be solved efficiently using functional programming

The Berkeley View project has identified 13 common computational patterns in engineering and science:

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce
8. Combinational Logic
9. Graph Traversal
10. Dynamic Programming
11. Backtrack and Branch-and-Bound
12. Graphical Models
13. Finite State Machines

MapReduce is only one of these patterns

The rest require shared mutable state

http://view.eecs.berkeley.edu/wiki/Dwarf_Mine
Parallelism in Python

Python provides two mechanisms for parallelism:

Threads execute in the same interpreter, sharing all data

- However, the CPython interpreter executes only one thread at a time, switching between them rapidly at (mostly) arbitrary points
- Operations external to the interpreter, such as file and network I/O, may execute concurrently

Processes execute in separate interpreters, generally not sharing data

- Shared state can be communicated explicitly between processes
- Since processes run in separate interpreters, they can be executed in parallel as the underlying hardware and software allow

The concepts of threads and processes exist in other systems as well.
The `threading` module contains classes that enable threads to be created and synchronized.

Here is a “hello world” example with two threads:

```python
from threading import Thread, current_thread

def thread_hello():
    other = Thread(target=thread_say_hello, args=())
    other.start()
    thread_say_hello()

def thread_say_hello():
    print('hello from', current_thread().name)

>>> thread_hello()
hello from Thread-1
hello from MainThread
```

Print output is not synchronized, so can appear in any order.
The `multiprocessing` module contains classes that enable processes to be created and synchronized.

Here is a “hello world” example with two processes:

```python
from multiprocessing import Process, current_process

def process_hello():
    other = Process(target=process_say_hello, args=())
    other.start()
    process_say_hello()

def process_say_hello():
    print('hello from', current_process().name)

>>> process_hello()
hello from MainProcess
>>> hello from Process-1
```

Function that the new process should run

Start the other process

Arguments to that function

Print output is not synchronized, so can appear in any order
The Problem with Shared State

Shared state that is mutated and accessed concurrently by multiple threads can cause subtle bugs

Here is an example with two threads that concurrently update a counter:

```python
from threading import Thread

counter = [0]

def increment():
    counter[0] = counter[0] + 1

other = Thread(target=increment, args=())
other.start()
increment()
other.join()

print('count is now', counter[0])
```

What is the value of `counter[0]` at the end?
The Problem with Shared State

```python
counter = [0]

def increment():
    counter[0] = counter[0] + 1

other = Thread(target=increment, args=())
other.start()
increment()
other.join()
print('count is now', counter[0])
```

What is the value of `counter[0]` at the end?

Only the most basic operations in CPython are *atomic*, meaning that they have the effect of occurring instantaneously.

The counter increment is three basic operations: read the old value, add 1 to it, write the new value.
The Problem with Shared State

We can see what happens if a switch occurs at the wrong time by trying to force one in CPython:

```python
from threading import Thread
from time import sleep

counter = [0]

def increment():
    count = counter[0]
    sleep(0)  # May cause the interpreter to switch threads
    counter[0] = count + 1

other = Thread(target=increment, args=())
other.start()
increment()
other.join()
print('count is now', counter[0])
```
The Problem with Shared State

```python
def increment():
    count = counter[0]
    sleep(0)  # May cause the interpreter to switch threads
    counter[0] = count + 1
```

Given a switch at the `sleep` call, here is a possible sequence of operations on each thread:

Thread 0
- read `counter[0]`: 0
- calculate `0 + 1`: 1
- write `1 -> counter[0]`

Thread 1
- read `counter[0]`: 0
- calculate `0 + 1`: 1
- write `1 -> counter[0]`

The counter ends up with a value of 1, even though it was incremented twice!
Race Conditions

A situation where multiple threads concurrently access the same data, and at least one thread mutates it, is called a *race condition*

Race conditions are difficult to debug, since they may only occur very rarely

Access to shared data in the presence of mutation must be *synchronized* in order to prevent access by other threads while a thread is mutating the data

Managing shared state is a key challenge in parallel computing

- Under-synchronization doesn’t protect against race conditions and other parallel bugs
- Over-synchronization prevents non-conflicting accesses from occurring in parallel, reducing a program’s efficiency
- Incorrect synchronization may result in *deadlock*, where different threads indefinitely wait for each other in a circular dependency

We will see some basic tools for managing shared state
Synchronized Data Structures

Some data structures guarantee synchronization, so that their operations are atomic.

```python
from queue import Queue

queue = Queue()

def increment():
    count = queue.get()
    sleep(0)
    queue.put(count + 1)

other = Thread(target=increment, args=())
other.start()
queue.put(0)
increment()
other.join()
print('count is now', queue.get())
```

Synchronized FIFO queue
Waits until an item is available
Add initial value of 0