CS61A Lecture 42
Amir Kamil
UC Berkeley
April 29, 2013

Announcements

- HW13 due Wednesday
- Scheme project due tonight!!!
- Scheme contest deadline extended to Friday

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs
- Read from standard input and write to standard output!

Mapper

```python
#!/usr/bin/env python3
import sys
from ucb import main
from mapreduce import emit

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```

Reduction

```python
#!/usr/bin/env python3
import sys
from ucb import main
from mapreduce import emit, group_values_by_key

for key, value_iterator in group_values_by_key(sys.stdin):
    emit(key, sum(value_iterator))
```

MapReduce Execution Model

Parallel Computation Patterns

Not all problems can be solved efficiently using functional programming
The Berkeley View project has identified 13 common computational patterns in engineering and science:

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5.Structured Grids
6. Unstructured Grids
7. MapReduce
8. Combinational Logic
9. Graph Traversal
10. Dynamic Programming
11. Backtrack and Branch-and-Bound
12. Graphical Models
13. Finite State Machines

MapReduce is only one of these patterns
The rest require shared mutable state
Parallelism in Python

Python provides two mechanisms for parallelism:

- **Threads** execute in the same interpreter, sharing all data
 - However, the CPython interpreter executes only one thread at a time, switching between them rapidly at (mostly) arbitrary points
 - Operations external to the interpreter, such as file and network I/O, may execute concurrently
- **Processes** execute in separate interpreters, generally not sharing data
 - Shared state can be communicated explicitly between processes
 - Since processes run in separate interpreters, they can be executed in parallel as the underlying hardware and software allow

The concepts of threads and processes exist in other systems as well.

The Problem with Shared State

Shared state that is mutated and accessed concurrently by multiple threads can cause subtle bugs

Here is an example with two threads that concurrently update a counter:

```python
from threading import Thread
counter = [0]

def increment():
    counter[0] = counter[0] + 1
other = Thread(target=increment, args=())
other.start()
other.join()  # Wait until other thread completes
print('count is now', counter[0])
```

What is the value of `counter[0]` at the end?

Processes

The `multiprocessing` module contains classes that enable processes to be created and synchronized

Here is a "hello world" example with two processes:

```python
from multiprocessing import Process, current_process

def process_hello():
    other = Process(target=process_say_hello, args=())
    other.start()  # Start the other process

process_say_hello():
    print('hello from', current_process().name)

>>> process_hello()
hello from MainProcess

>>> process_hello()
hello from Process-1
```

The Problem with Shared State

```python
from threading import Thread
from time import sleep

counter = [0]

def increment():
    count = counter[0]
    sleep(0)  # May cause the interpreter to switch threads
    counter[0] = count + 1
other = Thread(target=increment, args=())
other.start()
other.join()
print('count is now', counter[0])
```

We can see what happens if a switch occurs at the wrong time by trying to force one in CPython:

```python
from threading import Thread
from time import sleep

counter = [0]

def increment():
    count = counter[0]
    sleep(0)  # May cause the interpreter to switch threads
    counter[0] = count + 1
other = Thread(target=increment, args=())
other.start()
other.join()
print('count is now', counter[0])
```
The Problem with Shared State

```python
def increment():
    count = counter[0]
    sleep(0)  # May cause the interpreter to switch threads
    counter[0] = count + 1
```

Given a switch at the `sleep` call, here is a possible sequence of operations on each thread:

Thread 0
- read `counter[0]`: 0
- calculate 0 + 1: 1
- write 1 -> `counter[0]`

Thread 1
- read `counter[0]`: 0
- calculate 0 + 1: 1
- write 1 -> `counter[0]`

The counter ends up with a value of 1, even though it was incremented twice!

Race Conditions

A situation where multiple threads concurrently access the same data, and at least one thread mutates it, is called a race condition

Race conditions are difficult to debug, since they may only occur very rarely

Access to shared data in the presence of mutation must be synchronized in order to prevent access by other threads while a thread is mutating the data

Managing shared state is a key challenge in parallel computing
- Under-synchronization doesn’t protect against race conditions and other parallel bugs
- Over-synchronization prevents non-conflicting accesses from occurring in parallel, reducing a program’s efficiency
- Incorrect synchronization may result in deadlock, where different threads indefinitely wait for each other in a circular dependency

We will see some basic tools for managing shared state

Synchronized Data Structures

Some data structures guarantee synchronization, so that their operations are atomic

```python
from queue import Queue  # Synchronized FIFO queue
queue = Queue()
def increment():
    count = queue.get()  # Waits until an item is available
    sleep(0)
    queue.put(count + 1)
other = Thread(target=increment, args=())
other.start()
queue.put(0)  # Add initial value of 0
ięciecrement()  # other.join()
print('count is now', queue.get())
```