Lecture #2: Functions, Expressions

Administrative

• Reader with discussion and other materials available at Vick Copy (Euclid and Hearst).

• Sign yourself up on Piazza. See course web page:

 http://inst.cs.berkeley.edu/~cs61a

• Be sure to get an account form next week in lab, and provide registration data.

Announcement: We’re trying to hire a new lecturer. There will be two candidates coming Jan. 27-28 (Josh Hug) and Feb. 3-4 (John DeNero), and you can help evaluate them! For both days:

• Mon 01:00pm-02:00pm "Big ideas" talk (in Woz)

• Tue 11:45am-12:45pm Undergrad student lunch on northside (meet in 777 Soda)

• Tue 01:00pm-02:00pm Demo Class talk (in 380 Soda for Josh, Woz for John)

• UG Tue 02:00pm-02:45pm Open Session after demo class (same rooms)
Recap

• From last lecture: *Values* are data we want to manipulate and in particular,
• *Functions* are values that perform computations on values.
• *Expressions* denote computations that produce values.
• Today, we’ll look at them in some detail at how functions operate on data values and how expressions denote these operations.
• As usual, although our concrete examples all involve Python, the actual concepts apply almost universally to programming languages.
Functions

- Something like `abs` denotes or evaluates to a function.
- To depict the denoted function values, we sometimes use this notation:

 \[
 \text{abs}(x): \quad \text{add}(a, b)
 \]

- Idea: The opening on the left takes in values and one on the right to delivers results.
- The (green) **formal parameter names**—such as `x`, `a`, `b`—show the number of parameters (inputs) to the function.
- The list of formal parameter names gives us the function’s **signature**—in Python, this is the number of arguments.
- For our purposes, the blue name is simply a helpful comment to suggest what the function does.
- (Python actually maintains this **intrinsic name** and the parameter names internally, but this is not a universal feature of programming languages, and, as you’ll see, can be confusing.)
Functions: Lambda

• I’m often going to use a more venerable notation for function values:
 \[\lambda x: \langle | x | \rangle \quad \lambda a, b: \langle \text{the sum of } a \text{ and } b \rangle \]

• Formal parameters go to the left of the colon.

• The part to the right of the colon is an expression that indicates what value is produced.

• I’ll use \(\langle \cdots \rangle \) expressions to indicate non-Python descriptions of values or computations.

• In Python, you can denote simple function values like this:
 \[
 \lambda a, b : \langle \text{the sum of } a \text{ and } b \rangle
 \]

 which evaluates to
 \[
 \lambda a, b: \langle \text{the sum of } a \text{ and } b \rangle
 \]

• (Well, OK: the \(\langle \cdots \rangle \) isn’t really Python, but I’ll use it as a place-holder for some computation I’m not prepared to write.)
The fundamental operation on function values is to *call* or *invoke* them, which means giving them one value for each formal parameter and having them produce the result of their computation on these values:

-5 \(\triangleright\) \(\text{abs}(\text{number}):\) \(\triangleright\) 5

\((29, 13) \triangleright\) \(\text{add}(\text{left}, \text{right})\) \(\triangleright\) 42
Call Expressions

• A call expression denotes the operation of calling a function.
• Consider \texttt{add(2, 3)}:

\[
\text{add}(2, 3)
\]

• The operator and the operands are all themselves expressions (recursion again).

• To evaluate this call expression:
 - Evaluate the operator (let’s call the value \(C\)). It must evaluate to a function.
 - Evaluate the operands (or \textit{actual parameters} in the order they appear (let’s call these values \(P_0\) and \(P_1\))
 - Call \(C\) with parameters \(P_0\) and \(P_1\).
Calling a Function (I): Substitution

- Once we have the values for the operator and operands, we must still actually evaluate the call.

- A simple way to understand this (which will work for simple expressions) is to think of the process as substitution.

- Once you have a value:

 \[\lambda \, a, b: \langle \text{sum of } a \text{ and } b \rangle \]

- and values for the operands (let’s say 2 and 3),

- substitute the operand values for the formal parameters, replacing the whole call with

 \[\langle \text{sum of } 2 \text{ and } 3 \rangle \]

- which in turn evaluates to 5.
Side Trip: Values versus Denotations

- Expressions such as 2 in a programming language are called literals.
- To evaluate them, we replace them with whatever values they are supposed to stand for.
- This is confusing:
 - Q: What is the value of the literal 2?
 - A: 2.
- ... and then you get into long, technical explanations about how the second “2” is really in a different language than the first, and actually is just another notation for some mystical Platonic “2” that is floating off somewhere.
- I’ll just try to be practical and distinguish values from literals by surrounding values in a boxes: the value of 2 is $\boxed{2}$.
- One way to see the distinction between literals and values: the literals 0x10 and 16 are obviously different, but both denote the same value: $\boxed{16}$.
Example: From Expression to Value

Let's evaluate the expression \(\text{mul}(\text{add}(2, \text{mul}(0\times4, 0\times6)), \text{add}(0\times3, 005)) \).

In the following sequence, values are shown in boxes. Everything outside a box is an expression.

\[
\begin{align*}
\text{• } \lambda a, b: \langle a \times b \rangle & \quad (\text{add}(2, \text{mul}(0\times4, 0\times6)), \text{add}(0\times3, 005)) \\
\text{• } \lambda a, b: \langle a \times b \rangle & \quad (\lambda a, b: \langle a + b \rangle (2, \lambda a, b: \langle a \times b \rangle (4, 6)), \text{add}(0\times3, 005)) \\
\text{• } \lambda a, b: \langle a \times b \rangle & \quad (\lambda a, b: \langle a + b \rangle (2, \langle 4 \times 6 \rangle, \text{add}(0\times3, 005))) \\
\text{• } \lambda a, b: \langle a \times b \rangle & \quad (\lambda a, b: \langle a + b \rangle (2, 24), \text{add}(0\times3, 005)) \\
\text{• } \lambda a, b: \langle a \times b \rangle & \quad (\langle 2 + 24 \rangle, \text{add}(0\times3, 005)) \\
\text{• } \lambda a, b: \langle a \times b \rangle & \quad (26, \text{add}(0\times3, 005)) \\
\text{• } \lambda a, b: \langle a \times b \rangle & \quad (26, \lambda a, b: \langle a + b \rangle (3, 5)) \\
\text{• } \ldots \lambda a, b: \langle a \times b \rangle & \quad (26, 8) \\
\text{• } \ldots & \quad 208.
\end{align*}
\]
Puzzle I

Evaluate

\((\text{lambda } a: \text{lambda } b: a + b)(1)(3) \)

- First, must understand how it’s grouped:

\(((\text{lambda } a: \text{lambda } b: a + b)(1))(3) \)
Puzzle I (contd.)

- \((\lambda a: \lambda b: a + b)(1)(3)\)
- \(\lambda a: \lambda b: a + b(1)(3)\)
- \((\lambda b: 1 + b)(3)\)
- \(\lambda b: 1 + b (3)\)
- \(1 + 3\)
- 4
Impure Functions

• The functions so far have been pure: their output depends only on their input parameters’ values, and they do nothing in response to a call but compute a value.

• Functions may do additional things when called besides returning a value.

• We call such things side effects.

• Example: the built-in print function:

\[
\begin{align*}
-5 & \triangleright \text{print}(\bullet \bullet \bullet) \\
\downarrow & \quad \text{display text ‘-5’}
\end{align*}
\]

• Displaying text is print’s side effect. It’s value, in fact, is generally useless (always the null value).

• For this lecture (at least), I’ll use λ! (“lambda bang”) to denote function values with side effects.
Example: Print

What about an expression with side effects?

1. print(print(1), print(2))

2. \(\lambda! \ x: \ll \text{print } x \gg \) (\(\lambda! \ x: \ll \text{print } x \gg \) (1), print(2))

3. \(\lambda! \ x: \ll \text{print } x \gg \) (None, print(2))
 and print '1'.

4. \(\lambda! \ x: \ll \text{print } x \gg \) (None, \(\lambda! \ x: \ll \text{print } x \gg \) (2))

5. \(\lambda! \ x: \ll \text{print } x \gg \) (None, None)
 and print '2'.

6. None
 and print 'None None'.