Lecture #2: Functions, Expressions

Administrative
- Reader with discussion and other materials available at Vick Copy (Euclid and Hearst).
- Sign yourself up on Piazza. See course web page: http://inst.cs.berkeley.edu/~cs61a
- Be sure to get an account form next week in lab, and provide registration data.

Announcement: We're trying to hire a new lecturer. There will be two candidates coming Jan. 27–28 (Josh Hug) and Feb. 3–4 (John DeNero), and you can help evaluate them! For both days:
 - Mon 01:00pm-02:00pm “Big ideas” talk (in Woz)
 - Tue 11:45am-12:45pm Undergrad student lunch on northside (meet in 777 Soda)
 - Tue 01:00pm-02:00pm Demo Class talk (in 380 Soda for Josh, Woz for John)
 - UG Tue 02:00pm-02:45pm Open Session after demo class (same rooms)

Recap
- From last lecture: **Values** are data we want to manipulate and in particular,
- **Functions** are values that perform computations on values.
- **Expressions** denote computations that produce values.
- Today, we'll look at them in some detail at how functions operate on data values and how expressions denote these operations.
- As usual, although our concrete examples all involve Python, the actual concepts apply almost universally to programming languages.

Functions
- Something like `abs` denotes or evaluates to a function.
- To depict the denoted function values, we sometimes use this notation: `abs(x):` and `add(a, b):`
 - Idea: The opening on the left takes in values and one on the right delivers results.
 - The (green) formal parameter names—such as `x`, `a`, `b`—show the number of parameters (inputs) to the function.
 - The list of formal parameter names gives us the function’s signature—in Python, this is the number of arguments.
 - For our purposes, the blue name is simply a helpful comment to suggest what the function does.
 - (Python actually maintains this intrinsic name and the parameter names internally, but this is not a universal feature of programming languages, and, as you’ll see, can be confusing.)

Functions: Lambda
- I’m often going to use a more venerable notation for function values: `λ x: ≪ | x | ≫` and `λ a, b: ≪ the sum of a and b ≫`
 - Formal parameters go to the left of the colon.
 - The part to the right of the colon is an expression that indicates what value is produced.
 - I’ll use `≪ · · · ≫` expressions to indicate non-Python descriptions of values or computations.
 - In Python, you can denote simple function values like this: `lambda a, b: ≪ the sum of a and b ≫` which evaluates to `λ a, b: ≪ the sum of a and b ≫`
 - (Well, OK: the `≪ · · · ≫` isn’t really Python, but I’ll use it as a placeholder for some computation I’m not prepared to write.)

Calling Functions (I)
- The fundamental operation on function values is to **call** or **invoke** them, which means giving them one value for each formal parameter and having them produce the result of their computation on these values:
 - `-5 ≫ abs(number):` and `5`
 - `(29, 13) ≫ add(left, right)` and `42`

Call Expressions
- A call expression denotes the operation of calling a function.
- Consider `add(2, 3):`
 - `add(Operator, Operand 0, Operand 1)`
 - The operator and the operands are all themselves expressions (recursion again).
 - To evaluate this call expression:
 - Evaluate the operator (let’s call the value `C`). It must evaluate to a function.
 - Evaluate the operands (or actual parameters) in the order they appear (let’s call these values `P_0` and `P_1`)
 - Call `C` with parameters `P_0` and `P_1`
Calling a Function (I): Substitution

- Once we have the values for the operator and operands, we must still actually evaluate the call.
- A simple way to understand this (which will work for simple expressions) is to think of the process as substitution.
- Once you have a value:
 \[\lambda a, b: \text{sum of } a \text{ and } b \]
 and values for the operands (let's say 2 and 3),
- substitute the operand values for the formal parameters, replacing the whole call with
 \[\text{sum of } 2 \text{ and } 3 \]
- which in turn evaluates to 5.

Example: From Expression to Value

Let's evaluate the expression \[\text{mul(add(2, mul(0x4, 0x6)), add(0x3, 005))} \].

In the following sequence, values are shown in boxes.

Everything outside a box is an expression.

- \[\text{mul(add(2, mul(0x4, 0x6)), add(0x3, 005))} \]
- \[\lambda a, b: \text{sum of } a \text{ and } b \]
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005))
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (2)
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- ... \[\lambda a, b: \text{sum of } a \text{ and } b \] (add(2, mul(0x4, 0x6)), add(0x3, 005)) (4) 5
- ... 208

Puzzle I

Evaluate \[(\lambda a: \lambda b: a + b)(1)(3) \]
- First, must understand how it's grouped:
 \[(\lambda a: \lambda b: a + b)(1)(3) \]
- ... and then you get into long, technical explanations about how the second "2" is really in a different language than the first, and actually is just another notation for some mystical Platonic "2" that is floating off somewhere.
- I'll just try to be practical and distinguish values from literals by surrounding values in a boxes: the value of 2 is \[[2] \]
- One way to see the distinction between literals and values: the literals 0x10 and 16 are obviously different, but both denote the same value: \[[16] \]

Puzzle I (cont'd.)

- \[(\lambda a: \lambda b: a + b)(1)(3) \]
- \[\lambda a: \lambda b: a + b \]
- \[(\lambda b: 1 + b)(3) \]
- \[\lambda b: 1 + b \]
- \[1 + 3 \]
- \[4 \]

Impure Functions

- The functions so far have been pure: their output depends only on their input parameters' values, and they do nothing in response to a call but compute a value.
- Functions may do additional things when called besides returning a value.
- We call such things side effects.
- Example: the built-in print function:
 \[\text{print}(-5) \]
 \[\rightarrow \text{display text '}-5'\]
- Displaying text is print's side effect. It's value, in fact, is generally useless (always the null value).
- For this lecture (at least), I'll use \['!' \] ("lambda bang") to denote function values with side effects.
Example: Print

What about an expression with side effects?
1. \(\text{print}(1), \text{print}(2) \)
2. \(\lambda x: \langle \text{print } x \rangle (\lambda x: \langle \text{print } x \rangle (1), \text{print}(2)) \)
3. \(\lambda x: \langle \text{print } x \rangle (\text{None}, \text{print}(2)) \)
 and print 1.
4. \(\lambda x: \langle \text{print } x \rangle (\text{None}, \lambda x: \langle \text{print } x \rangle (2)) \)
5. \(\lambda x: \langle \text{print } x \rangle (\text{None}, \text{None}) \)
 and print 2.
6. \(\text{None} \)
 and print 'None None'.