Lecture #8: More Recursion

Announcements:

• Project #1 due next Thursday (13 Feb).

• Test #1 Tuesday, 18 Feb at 8PM.

• AWE 61A Party this Sunday (9 Feb) in the Woz, 1-3PM.

• Guerilla Sections this weekend (see Piazza).

• Self-assessment quiz will be released tonight, due Monday. Watch the website and Piazza.
A Simple Recursion

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
    print(n)
cascade(123)
```

Program output:

```
123
12
1
12
```

- Each frame connects to the global frame.
- Frames without “Return value” are still active.
- Each recursive call has its own \(n \) value.
- That’s how it works, but try *not* to think of it this way!
- Think recursively instead.
Classifying Recursions: Linear Recursions

- Here, each call of `cascade` contains one recursive call.
- When that call completes, still a print to go.
- So calls must remain pending.
- A *linear recursive process*: total work and space proportional to depth of calls.
Classifying Recursions: Iterative Processes

def triang(n):
 print(n)
 if n < 10: triang(n-1)

• Again, each call of `triang` contains one recursive call.

• So this is a type of linear recursive process.

• But there’s no more to do when that call completes (tail recursive)

• So in principle, calls need not remain pending.

• An *iterative process*: total work still proportional to depth of calls, but total space need not be.

• This kind is suitable for a loop.
Classifying Recursion: Tree Recursions

- Previously, we looked at a program for computing values in the Fibonacci sequence:

  ```python
def fib(n):
    """The Nth Fibonacci number, N>=0.""
    assert n >= 0
    if n <= 1:
      return n
    else:
      return fib(n-2) + fib(n-1)
  ```

Here, each invocation of `fib` makes **two** calls: work is exponential in depth of calls: A **tree-recursive process**.

![Tree Diagram](image)
A Tree Recursion: Partitions

- **partitions(n, k):** The number of non-decreasing sequences of two or more positive integers between 1 and \(k \) that add up to \(n \).

- For example, \(\text{partitions}(6, 4) \) is 9:

 2 + 4 = 6
 1 + 1 + 4 = 6
 3 + 3 = 6
 1 + 2 + 3 = 6
 1 + 1 + 1 + 3 = 6
 2 + 2 + 2 = 6
 1 + 1 + 2 + 2 = 6
 1 + 1 + 1 + 1 + 2 = 6
 1 + 1 + 1 + 1 + 1 + 1 = 6
Computing Partitions

- Observation: can choose sizes 1-\(k\) for the last partition.

- If we choose size \(k\) for the last partition, then how many ways are there to partition the rest?

- Suppose we choose not to use size \(k\) for the last partition, then how many choices are there?

- Finally, there is only one way to partition 0 items or to partition a negative number of items or a positive number of items with maximum partition size of 0.
Computing Partitions

• Observation: can choose sizes 1–k for the last partition.

• If we choose size k for the last partition, then how many ways are there to partition the rest?

• The number of ways of partitioning $n - k$ items of maximum size k.

• Suppose we choose not to use size k for the last partition, then how many choices are there?

• Finally, there is only one way to partition 0 items or to partition a negative number of items or a positive number of items with maximum partition size of 0.
Computing Partitions

- Observation: can choose sizes $1-k$ for the last partition.
- If we choose size k for the last partition, then how many ways are there to partition the rest?
- The number of ways of partitioning $n-k$ items of maximum size k.
- Suppose we choose not to use size k for the last partition, then how many choices are there?
- The number of ways of partitioning n items of maximum size $k-1$.
- Finally, there is only one way to partition 0 items or to partition a negative number of items or a positive number of items with maximum partition size of 0.
Partitions, concluded

This leads to the following program:

```python
def partitions(n, k):
    """The number of ways of partitioning N items into partitions of size <= K."""
    if n == 0:
        return 1
    elif n < 0 or k <= 0:
        return 0
    else:
        with_k =
        without_k =
        return with_k + without_k
```

Last modified: Fri Feb 7 15:28:24 2014
Partitions, concluded

This leads to the following program:

def partitions(n, k):
 """The number of ways of partitioning N items into partitions of size <=k."""
 if n == 0:
 return 1
 elif n < 0 or k <= 0:
 return 0
 else:
 with_k = partitions(n-k, k)
 without_k = partitions(n, k-1)
 return with_k + without_k