Another Tree Recursion: Hog Dice

- What are the odds of rolling at least k in hog with n-sided dice? ($n > 0$ and for us, $s > 0$ is 4 or 6)

$$\frac{\text{# rolls of } n \text{-sided dice totaling } \geq k}{s^n}$$

- If $k \leq 1$, then clearly the numerator is just s^n.
- For $k > 1$, we consider only rolls that include dice values 2-s, since any 1-die "pigs out." Let's call this quantity $rolls2(k, n, s)$.
- The number of ways to score $\geq k$ is 0 if $nk < k$. This is a base case.
- If $n > 0$ then the number of ways to score at least $k \leq 1$ with n dice none of which is 1 is $[x-1]^n$. This is also a base case.
- If the first die comes up d ($2 \leq d \leq s$), then there are $rolls2(k-d, n-1, s)$ ways to throw the remaining $n-1$ dice to get a total of at least k with all n dice.
- This gives us a tree recursion. How would you modify it for the "swine swap" rule?

Back to Numeric Pairs: Find the Number

- A numeric pair is either an empty tuple, an integer, or a tuple consisting of two numeric pairs (slight revision from last time).
- Problem: does the number x occur in a given numeric pair?

```python
def occurs(x, pair):
    """X occurs at least once in numeric pair PAIR."
    if x == pair:
        return True
    elif pair == () or type(pair) is int:
        return False
    else:
        return occurs(x, pair[0]) or occurs(x, pair[1])
```

- What is the time required by this function proportional to? A: The total number of tuples and integers in pair.

First Leaf Code

```python
def first_leaf(pair):
    """The first leaf in PAIR, reading left to right."
    if type(pair) is int or pair == ()
        return pair
    else:
        return first_leaf(pair[0])
```

- What kind of a recursive process is this? A: Iterative process (tail recursion)

Sierpinski Triangle

- No discussion of recursion is complete without a mention of fractal patterns, which exhibit self-similarity when scaled.
- We'll define a "Sierpinski Triangle of depth k and side s" to be
 - A filled equilateral triangle with sides of length s, if $k = 0$.
 - Three Sierpinski Triangles of depth $k-1$ and side $s/2$ arranged in the three corners of an equilateral triangle with side s.
- Here are triangles of degree 4 and 8:
Drawing Sierpinski Triangles

Assume the existence of the function \texttt{triangle}:

\begin{verbatim}
def triangle(x, y, side):
 """Draw a filled equilateral triangle with its lower-left corner
 at (X, Y) and with given SIDE. The base is aligned with the x-axis."""
\end{verbatim}

We can now read off the definition of the \texttt{sierpinski}:

\begin{verbatim}
def sierpinski(x, y, side, depth):
 """Draw a Sierpinski triangle of given DEPTH with given SIDE and
 lower-left corner at (X, Y)."""
 if depth == 0:
 triangle(x, y, side)
 else:
 height = 0.25 * sqrt(3) * side
 sierpinski(x, y, side/2, depth-1)
 sierpinski(x + side/4, y + height, side/2, depth-1)
 sierpinski(x + side/2, y, side/2, depth-1)
\end{verbatim}