Lecture #13: More Sequences and Strings
Odds and Ends: Multi-Argument Map

- Python’s built-in `map` function actually applies a function to one or more sequences:
  ```python
  >>> from operator import *
  >>> tuple(map(abs, (-1, 2, -4, 5)))
  (1, 2, 4, 5)
  >>> tuple(map(add, (1, 2, 3, 18), (5, 2, 1)))
  (6, 4, 4)
  ```

- That is, `map` takes a function of N arguments plus N sequences and applies the function to the corresponding items of the sequences (throws away extras, like 18).

- So, how do we do this:
  ```python
def deltas(L):
  """Given that L is a sequence of N items, return the (N-1)-item sequence (L[1]-L[0], L[2]-L[1],...)."
  return ______________________
  ```
Odds and Ends: Multi-Argument Map

- Python’s built-in `map` function actually applies a function to one or more sequences:
  ```python
  >>> from operator import *
  >>> tuple(map(abs, (-1, 2, -4, 5)))
  (1, 2, 4, 5)
  >>> tuple(map(add, (1, 2, 3, 18), (5, 2, 1)))
  (6, 4, 4)
  ```

- That is, `map` takes a function of \(N \) arguments plus \(N \) sequences and applies the function to the corresponding items of the sequences (throws away extras, like 18).

- So, how do we do this:
  ```python
  def deltas(L):
      """Given that L is a sequence of N items, return the (N-1)-item sequence (L[1]-L[0], L[2]-L[1],...).""
      return map(sub, tuple(L)[1:], L)
  ```
Defining multi-argument map: zip and F(*S)

• Defining `map` requires
 - The library function `zip`:
    ```python
tuple(zip((1, 2), (3, 4), (5, 6, 7)))
    ((1, 3, 5), (2, 4, 6))
    ```
 - And Python’s “apply” and multi-argument syntax:
    ```python
def multi_arg(*args):
    print(args)
>>> multi_arg()
[]
>>> multi_arg(1)
[1]
>>> multi_arg(3, 4, 5)
[3, 4, 5]
>>> def two_argument_function(x, y):
    return 2*x + 3*y
>>> two_argument_function(3, 4)
18
>>> two_argument_function(* (3, 4) )
18
```

• `def map(func, *sequences):
 return (func(*S) for S in zip(*sequences))`
Odds and Ends: Membership

- Built-in Python sequences support the membership operation:

```python
>>> 5 in (2, 3, 5, 7, 11, 13, 17, 19)
True
>>> 6 not in (2, 3, 5, 7, 11, 13, 17, 19)
True
>>> (3, 2) in ((1, 2), (3, 4), (6, 5), (2, 3))
False
>>> 
```
Representing Multi-Dimensional Structures

• How do we represent a two-dimensional table (like a matrix)?
• Answer: use a sequence of sequences (such as a tuple of tuples).
• The same approach is used in C, C++, and Java.
• Example:

\[
\begin{bmatrix}
1 & 2 & 0 & 4 \\
0 & 1 & 3 & -1 \\
0 & 0 & 1 & 8
\end{bmatrix}
\]

becomes

((1, 2, 0, 4), (0, 1, 3, -1), (0, 0, 1, 8))

or

[[1, 2, 0, 4], [0, 1, 3, -1], [0, 0, 1, 8]]
The Game of Life: Another Problem

• J. H. Conway’s Game of Life is an example of a cellular automaton on an infinite grid of squares.

• Each square may be occupied or unoccupied.

• One generation of cells is computed from the preceding according to a simple rule:
 - An occupied empty square with 2 or 3 occupied neighbor squares in one generation remains occupied in the next.
 - An empty square with exactly 3 occupied neighbor squares in one generation becomes occupied in the next.
 - All other squares become or remain unoccupied in the next generation.

• One can build arbitrary computations from these simple rules, resulting in remarkable patterns.

• (See http://www.youtube.com/watch?v=C2vg1CfQawE)
Counting Neighbors

- Consider the problem of computing the number of occupied neighbors of each cell on a grid.
- We’ll use a slight modification: a finite grid that wraps around: the top row is adjacent to the bottom, and the left column adjacent to the right.
- Example (1 indicates occupancy; blank squares are 0):

<table>
<thead>
<tr>
<th>Board</th>
<th>Neighbor Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>0 2 3 5 3 2 0 0</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 3 4 7 4 3 0 0</td>
</tr>
<tr>
<td>1 1</td>
<td>0 2 2 5 2 2 0 0</td>
</tr>
<tr>
<td></td>
<td>0 2 2 3 2 3 2 1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 1 0 1 2 3 3 2</td>
</tr>
<tr>
<td>1 1</td>
<td>0 1 1 1 2 3 3 2</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 1 2 2 1</td>
</tr>
<tr>
<td></td>
<td>0 1 2 3 2 1 0 0</td>
</tr>
</tbody>
</table>
Strategy (I): Map2

• Suppose that we have a function like `map` that operates on sequences of sequences.

```python
def map2(f, A, B):
    """Given that A and B are 2-dimensional sequences, the result of applying f to corresponding elements of A and B (as a tuple of tuples). Extra rows or columns in one or the other argument are thrown away.
    >>> map2(add, ((1, 2, 3), (4, 5, 6)), ((7, 8, 9), (10, 11, 12)))
    ((8, 10, 12), (14, 16, 18))
    """
    return tuple(map(lambda ra, rb: tuple(map(f, ra, rb)),
                      A, B))
```

• With this, we can find the number of neighbors of each cell (with a little help).
Strategy (II): rotate2

- **Rotating** a sequence right by N means moving its last N values to the front, shifting the rest over.
- Rotating left by N moves the first N values to the end.
- We rotate 2D lists in two directions: rotating the rows and the columns:

```python
def rotate2(A, dr, dc):
    """Given that A is a 2-dimensional sequence the result of rotating each row of A by DC columns and each column by DR rows. That is, a new 2D tuple, B, in which B[r+dr][c+dc] is A[r][c], wrapping at the ends.
>>> rotate2( ((1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12)), (1, -1))
((11, 12, 10), (2, 3, 1), (5, 6, 4), (8, 9, 7))""
    def rotate(R, d):
        # Negative slice indices count from the right.
        if d < 0:
            return R[-len(R)-d:] + R[0: -d]
        else:
            return R[-d:] + R[0: len(R)-d]
    rows = tuple(map(lambda row: rotate(row, dc), A))
    return rotate(rows, dr)
```
Strategy (III): Adding Up Neighbors

• Now we can find number of neighbors (with wrap-around) by shifting and adding:

\[
A = \begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 \\
\end{array}
\]

\[
\text{neighbor}_\text{count}(A) = \begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array} + \begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array} + \begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array} + \ldots
\]
Finally, neighbor_count

Putting it all together:

```python
def neighbor_count(A):
    """Given a life board A, the number of neighbors corresponding to each cell as a tuple of tuples, assuming the board wraps around.

>>> neighbor_count(((0, 0, 0, 0),
... (0, 1, 0, 0),
... (0, 1, 1, 0),
... (0, 0, 0, 0)))
((1, 1, 1, 0), (2, 2, 3, 1), (2, 2, 2, 1), (1, 2, 2, 1))
"""

    sum2 = lambda A, B: map2(add, A, B)
    neighbors = ((-1, -1), (-1, 0), (-1, 1),
                  (0, -1),        (0, 1),
                  (1, -1), (1, 0), (1, 1))
    return reduce(sum2,
                  map(lambda d: rotate2(A, d[0], d[1]),
                       neighbors))```

Last modified: Tue Mar 18 16:17:54 2014
Strings: A Specialized Type of Sequence

- Strings are sequences of characters, with a good deal of special syntax.

- Rather odd property: the base cases are circular. Characters are themselves strings of length 1!

- The usual operations on tuples apply also to strings:

  ```python
 >>> "abcd"[0]
 'a'
 >>> len("abcd")
 4
 >>> "abcd"[1:3]
 'bc'
 >>> "ab" + "cd"
 'abcd'
 >>> "x" * 5
 "xxxxx"
 >>> for c in "abcd":
 print(c, end="",)
 a, b, c, d,
  ```
Modified Operations

• Membership is not quite the same for strings:
  ```python
 >>> 'b' in ('a', 'b', 'c', 'd') # A sequence, not a string
 True
 >>> 'bc' in ('a', 'b', 'c', 'd')
 False
 # But...
 >>> 'b' in 'abcd'
 True
 >>> 'bc' in 'abcd' # in Finds substrings
 True
  ```

• The substring is generally more important than the character, in other words.
Numerous Functions and Methods

• The calls `str(x)` and `x.__str__()` convert values of any type into strings that depict them:

  ```python
 >>> str(3+7)
 '10'
 A string, not an int
  ```

• The methods reflect common manipulations from “real life”:

  ```python
 >>> "i can’t find my shift key".capitalize()
 'I can’t find my shift key'
 >>> "cHaNge".upper() + " CaSe".lower() + " raNDomLY".swapcase()
 'CHANGE case RAndOMly'
 >>> '1234'.isnumeric() and 'abcd'.isalpha()
 True
 >>> 'SNAKEeyes'.upper().endswith('YES')
 True
 >>> '{x} + {y} = {answer}'.format(answer=7, x=3, y=4)
 '3 + 4 = 7'
 >>> " ".join(map(lambda x: x.capitalize(), "a bunch of words".split()))
 'A Bunch Of Words'
  ```
A Cast of Thousands

- Python3 uses Unicode as its basic character set: an international standard comprising most alphabets (dead and alive).

- Characters have standard numbers (indicating position in the character set) and names. The Python `ord` and `chr` convert from character to number and back.

- Getting your computer to actually render them all properly, however, is another matter entirely, which is outside Python.

- The character codes from 0-127 (7-bit codes) are known as ASCII (American Standard Code for Information Interchange). Everything you typically type uses this subset.

- Nice property: 1 byte (8 bits) per character.

- This is lost with Unicode, but since there is an extra bit, we can encode larger character codes (UTF-8).
You've seen string literals all along. Python has 8 (!) styles. Consider the string

\begin{quote}
"I'd rather be in Philadelphia."
\end{quote}

which we can write:

>>> "\\begin{quote}\\n"I'd rather be in Philadelphia.\\n\\end{quote}"

>>> '\\\begin{quote}\\n"I'\d rather be in Philadelphia.\\n\\end{quote}’

>>> """\\begin{quote}
... "I'd rather be in Philadelphia."
... \end{quote}"

>>> '''\\begin{quote}
... "I'd rather be in Philadelphia."
... \end{quote}'''

>>> r'''\\begin{quote}
... "I'd rather be in Philadelphia."
... \end{quote}'''

Last modified: Tue Mar 18 16:17:54 2014
Escapes

- The \ escape allows us to introduce special, non-graphical characters newline \n, tab \t
- Or to insert quoting characters.
- Or Unicode characters:
  "\u006b\u03b1\u03b2\u03b3\u03b6\u05d1\u05d0\u8071\u8072"
  "\u263a\u2639"

[Try printing this on your home computer].
Strings as Sequences

- Most string operations are variations on the sequence operations we've seen.

- Example: take a string, break it into lines, indent the lines by $N$ spaces, glue the lines back together, and return the result

```python
def indent_lines(s, n):
 """The result of indenting each line in s by n spaces.""
 return \n.join(map(lambda line: " " * n + line, s.split(\n))
```

- Use it to indent a file:

```python
print(indent_lines(open("afile").read(), 4))
```

- An even more general manipulation: regular expressions:

```python
import re
def indent_lines(s, n):
 return re.sub(r'(\m)\', ' ', ' ' * n, s)
```

Further exploration left to the reader. E.g., see `13.py`
Observation: Sequences as Conventional Interfaces

• Python 3 defines map, reduce, and filter on sequences just as we did on rlists.

• So to compute the sum of the even Fibonacci numbers among the first 12 numbers of that sequence, we could proceed like this:

   First 20 integers:
   0  1  2  3  4  5  6  7  8  9  10  11

   Map fib:
   0  1  1  2  3  5  8 13 21 34 55 89

   Filter to get even numbers:
   0  2  8  34

   Reduce to get sum:
   44

• ...or:

   reduce(add, filter(is_even, map(fib, range(12))))

• Why is this important? Sequences are amenable to parallelization.
An aside: Streams in Unix

- Many Unix utilities operate on *streams of characters*, which are sequences.
- With the help of pipes, one can do amazing things. One of my favorites:

  ```
 tr -c -s ’[:alpha:]’ ’[\n*]’ < FILE | \
 sort | \
 uniq -c | \
 sort -n -r -k 1,1 | \
 sed 20q
  ```

  which prints the 20 most frequently occurring words in `FILE`, with their frequencies, most frequent first.