Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 • 0/3: Please talk to your TA for advice on how to proceed
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 – 0/3: Please talk to your TA for advice on how to proceed
 – 1/3: Make sure to spend time understanding all lab & discussion questions
 – 2/3: Practice is extremely helpful in learning how to solve CS problems
• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems

• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems
• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm - 4pm is the vanguard section (you commit to helping teach the main section)
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems
• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm – 4pm is the vanguard section (you commit to helping teach the main section)
 ▪ 4pm – 6pm is the main section
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems

• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm – 4pm is the vanguard section (you commit to helping teach the main section)
 ▪ 4pm – 6pm is the main section
 ▪ Please do not bring questions about homework or projects to guerrilla sections
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems

• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm – 4pm is the vanguard section (you commit to helping teach the main section)
 ▪ 4pm – 6pm is the main section
 ▪ Please do not bring questions about homework or projects to guerrilla sections

• Small-group tutoring begins next week! Apply online by Sunday if you want a (free) tutor
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems

• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm – 4pm is the vanguard section (you commit to helping teach the main section)
 ▪ 4pm – 6pm is the main section
 ▪ Please do not bring questions about homework or projects to guerrilla sections

• Small-group tutoring begins next week! Apply online by Sunday if you want a (free) tutor

• Homework 2 (which is small) is due Monday 2/2 at 11:59pm
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems
• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm – 4pm is the vanguard section (you commit to helping teach the main section)
 ▪ 4pm – 6pm is the main section
 ▪ Please do not bring questions about homework or projects to guerrilla sections
• Small-group tutoring begins next week! Apply online by Sunday if you want a (free) tutor
• Homework 2 (which is small) is due Monday 2/2 at 11:59pm
• Project 1 (which is BIG) is due Thursday 2/5 at 11:59pm
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems
• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm – 4pm is the vanguard section (you commit to helping teach the main section)
 ▪ 4pm – 6pm is the main section
 ▪ Please do not bring questions about homework or projects to guerrilla sections
• Small-group tutoring begins next week! Apply online by Sunday if you want a (free) tutor
• Homework 2 (which is small) is due Monday 2/2 at 11:59pm
• Project 1 (which is BIG) is due Thursday 2/5 at 11:59pm
• Midterm 1 on Monday 2/9 7pm–9pm
Announcements

• Quiz 1 scores will be posted eventually, but you already know what you'll get
 ▪ 0/3: Please talk to your TA for advice on how to proceed
 ▪ 1/3: Make sure to spend time understanding all lab & discussion questions
 ▪ 2/3: Practice is extremely helpful in learning how to solve CS problems
• Guerrilla Section 1 on higher-order functions is on Saturday 1/31 in 271 Soda
 ▪ Optional discussion to promote mastery of core concepts (prepares you for midterms)
 ▪ 2pm – 4pm is the vanguard section (you commit to helping teach the main section)
 ▪ 4pm – 6pm is the main section
 ▪ Please do not bring questions about homework or projects to guerrilla sections
• Small-group tutoring begins next week! Apply online by Sunday if you want a (free) tutor
• Homework 2 (which is small) is due Monday 2/2 at 11:59pm
• Project 1 (which is BIG) is due Thursday 2/5 at 11:59pm
• Midterm 1 on Monday 2/9 7pm–9pm
 ▪ Conflict? Fill out the conflict form today! http://goo.gl/2P5fKq
Environments for Higher-Order Functions
Environments Enable Higher-Order Functions
Environments Enable Higher-Order Functions

Functions are first-class: Functions are values in our programming language
Environments Enable Higher-Order Functions

Functions are first-class: Functions are values in our programming language

Higher-order function: A function that takes a function as an argument value or
A function that returns a function as a return value
Environments Enable Higher-Order Functions

Functions are first-class: Functions are values in our programming language.

Higher-order function: A function that takes a function as an argument value *or* A function that returns a function as a return value.

Environment diagrams describe how higher-order functions work!
Environments Enable Higher-Order Functions

Functions are first-class: Functions are values in our programming language

Higher-order function: A function that takes a function as an argument value or A function that returns a function as a return value

Environment diagrams describe how higher-order functions work!
Names can be Bound to Functional Arguments

```python
1  def apply_twice(f, x):
2      return f(f(x))

4  def square(x):
5      return x * x

7  result = apply_twice(square, 2)
```
Names can be Bound to Functional Arguments

```python
1 def apply_twice(f, x):
2     return f(f(x))
3
4 def square(x):
5     return x * x
6
7 result = apply_twice(square, 2)
```
Names can be Bound to Functional Arguments

```python
1 def apply_twice(f, x):
2     return f(f(x))
3
4 def square(x):
5     return x * x
6
7 result = apply_twice(square, 2)
```

Applying a user-defined function:
- Create a new frame
- Bind formal parameters \((f \& x)\) to arguments
- Execute the body:
 return \(f(f(x))\)
Names can be Bound to Functional Arguments

```python
1 def apply_twice(f, x):
2     return f(f(x))

4 def square(x):
5     return x * x

7 result = apply_twice(square, 2)
```

Applying a user-defined function:
- Create a new frame
- Bind formal parameters \((f \& x)\) to arguments
- Execute the body:
  ```python
  return f(f(x))
  ```

Interactive Diagram
Names can be Bound to Functional Arguments

```python
1 def apply_twice(f, x):
2     return f(f(x))
3
4 def square(x):
5     return x * x
6
7 result = apply_twice(square, 2)
```

Interactive Diagram

Applying a user-defined function:
- Create a new frame
- Bind formal parameters \((f & x)\) to arguments
- Execute the body:
 return \(f(f(x))\)
Names can be Bound to Functional Arguments

```python
def apply_twice(f, x):
    return f(f(x))

def square(x):
    return x * x

result = apply_twice(square, 2)
```

Interactive Diagram

Applying a user-defined function:
- Create a new frame
- Bind formal parameters \((f & x)\) to arguments
- Execute the body:
  ```python
  return f(f(x))
  ```
Environments for Nested Definitions

(Demo)
def make_adder(n):
 def adder(k):
 return k + n
 return adder

add_three = make_adder(3)
add_three(4)
Environment Diagrams for Nested Def Statements

```python
1  def make_adder(n):
2      def adder(k):
3          return k + n
4      return adder
5
6  add_three = make_adder(3)
7  add_three(4)
```
Environment Diagrams for Nested Def Statements

```python
def make_adder(n):
    def adder(k):
        return k + n
    return adder

6 add_three = make_adder(3)
7 add_three(4)
```

Interactive Diagram
Environment Diagrams for Nested Def Statements

1. `def make_adder(n):
2. def adder(k):
3. return k + n
4. return adder
5.
6. add_three = make_adder(3)
7. add_three(4)
Environment Diagrams for Nested Def Statements

```python
1 def make_adder(n):
2     def adder(k):
3         return k + n
4     return adder
5
6 add_three = make_adder(3)
7 add_three(4)
```
Environment Diagrams for Nested Def Statements

1. `def make_adder(n):`
2. ` def adder(k):
3. return k + n`
4. ` return adder`
5. `
6. add_three = make_adder(3)
7. add_three(4)`

Interactive Diagram
Environment Diagrams for Nested Def Statements

```python
def make_adder(n):
    def adder(k):
        return k + n
    return adder

add_three = make_adder(3)
add_three(4)
```

Interactive Diagram
Environment Diagrams for Nested Def Statements

1. def make_adder(n):
2. def adder(k):
3. return k + n
4. return adder
5.
6. add_three = make_adder(3)
7. add_three(4)
Environment Diagrams for Nested Def Statements

```python
1 def make_adder(n):
2     def adder(k):
3         return k + n
4     return adder
5
6 add_three = make_adder(3)
7 add_three(4)
```

• Every user-defined function has a parent frame (often global)
Environment Diagrams for Nested Def Statements

Every user-defined function has a parent frame (often global)
The parent of a function is the frame in which it was defined

Interactive Diagram
Every user-defined function has a parent frame (often global).

The parent of a function is the frame in which it was defined.

Every local frame has a parent frame (often global).
Environment Diagrams for Nested Def Statements

- Every user-defined function has a parent frame (often global)
- The parent of a function is the frame in which it was defined
- Every local frame has a parent frame (often global)
- The parent of a frame is the parent of the function called

```
def make_adder(n):
    def adder(k):
        return k + n
    return adder

add_three = make_adder(3)
add_three(4)
```
How to Draw an Environment Diagram
How to Draw an Environment Diagram

When a function is defined:
How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]
How to Draw an Environment Diagram

When a function is defined:

Create a function value: \texttt{func <name>(<formal parameters>) [parent=<label>]}

Its parent is the current frame.
How to Draw an Environment Diagram

When a function is defined:

Create a function value:

```
func <name>(<formal parameters>) [parent=<label>]
```

Its parent is the current frame.

```
f1: make_adder           func adder(k) [parent=f1]
```
How to Draw an Environment Diagram

When a function is defined:

Create a function value: func <name>(<formal parameters>) [parent=<label>]

Its parent is the current frame.

```
  f1: make_adder               func adder(k) [parent=f1]
```

Bind <name> to the function value in the current frame
How to Draw an Environment Diagram

When a function is defined:

Create a function value: `func <name>(<formal parameters>) [parent=<label>]`

Its parent is the current frame.

```
f1: make_adder  func adder(k) [parent=f1]
```

Bind `<name>` to the function value in the current frame

When a function is called:
How to Draw an Environment Diagram

When a function is defined:
Create a function value: func <name>(<formal parameters>) [parent=<label>]
Its parent is the current frame.

Bind <name> to the function value in the current frame.

When a function is called:
1. Add a local frame, titled with the <name> of the function being called.
How to Draw an Environment Diagram

When a function is defined:
Create a function value: func <name>(<formal parameters>) [parent=<label>]
Its parent is the current frame.

BIND <name> to the function value in the current frame

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.
2. Copy the parent of the function to the local frame: [parent=<label>]
How to Draw an Environment Diagram

When a function is defined:
Create a function value:
\[
\text{func } \text{<name>}(\text{<formal parameters}>) \ [\text{parent=<label>}]
\]
Its parent is the current frame.

Bind \text{<name>} to the function value in the current frame

When a function is called:
1. Add a local frame, titled with the \text{<name>} of the function being called.
🌟 2. Copy the parent of the function to the local frame: \[\text{[parent=<label>]}\]
3. Bind the \text{<formal parameters>} to the arguments in the local frame.
How to Draw an Environment Diagram

When a function is defined:

Create a function value: \(\text{func } \langle \text{name} \rangle(\langle \text{formal parameters} \rangle) \ [\text{parent}=\langle \text{label} \rangle] \)

Its parent is the current frame.

\(\text{f1: make_adder} \) \(\text{func adder(k) [parent=f1]} \)

Bind \(\langle \text{name} \rangle \) to the function value in the current frame.

When a function is called:

1. Add a local frame, titled with the \(\langle \text{name} \rangle \) of the function being called.

\(\star \) 2. Copy the parent of the function to the local frame: \([\text{parent}=\langle \text{label} \rangle] \)

3. Bind the \(\langle \text{formal parameters} \rangle \) to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.
Local Names

(Demo)
Local Names are not Visible to Other (Non-Nested) Functions

```
def f(x, y):
    return g(x)

def g(a):
    return a + y

result = f(1, 2)
```

Interactive Diagram
Local Names are not Visible to Other (Non-Nested) Functions

```python
1 def f(x, y):
2     return g(x)
3
4 def g(a):
5     return a + y
6
7 result = f(1, 2)
```

Interactive Diagram
Local Names are not Visible to Other (Non-Nested) Functions

```python
1  def f(x, y):
2       return g(x)
3
4  def g(a):
5      return a + y
6
7  result = f(1, 2)
```

Interactive Diagram
Local Names are not Visible to Other (Non-Nested) Functions

```python
def f(x, y):
    return g(x)
def g(a):
    return a + y
result = f(1, 2)
```

Interactive Diagram
Local Names are not Visible to Other (Non-Nested) Functions

```python
def f(x, y):
    return g(x)
def g(a):
    return a + y
result = f(1, 2)
```

Interactive Diagram
Local Names are not Visible to Other (Non-Nested) Functions

```python
1 def f(x, y):
2     return g(x)
3
4 def g(a):
5     return a + y
6
7 result = f(1, 2)
```

"y" is not found

Error

"y" is not found, again

Interactive Diagram
Local Names are not Visible to Other (Non-Nested) Functions

```
1 def f(x, y):
2     return g(x)
3
4 def g(a):
5     return a + y
6
7 result = f(1, 2)
```

- An environment is a sequence of frames.
Local Names are not Visible to Other (Non-Nested) Functions

```python
def f(x, y):
    return g(x)

def g(a):
    return a + y

result = f(1, 2)
```

- An environment is a sequence of frames.
- The environment created by calling a top-level function (no def within def) consists of one local frame, followed by the global frame.

Interactive Diagram
Function Composition

(Demo)
```python
def square(x):
    return x * x

def make_adder(n):
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    def h(x):
        return f(g(x))
    return h

compose1(square, make_adder(2))(3)
```

Interactive Diagram
The Environment Diagram for Function Composition

```
1  def square(x):
2      return x * x
3
4  def make_adder(n):
5      def adder(k):
6          return k + n
7      return adder
8
9  def compose1(f, g):
10     def h(x):
11        return f(g(x))
12     return h
13
14  compose1(square, make_adder(2))(3)

```

Interactive Diagram
The Environment Diagram for Function Composition

```python
1 def square(x):
2     return x * x
3
4 def make_adder(n):
5     def adder(k):
6         return k + n
7     return adder
8
9 def compose1(f, g):
10    def h(x):
11        return f(g(x))
12    return h
13
14 compose1(square, make_adder(2))(3)
```

Interactive Diagram
```python
1. def square(x):
   return x * x

2. def make_adder(n):
   def adder(k):
       return k + n
   return adder

3. def compose1(f, g):
   def h(x):
       return f(g(x))
   return h

4. compose1(square, make_adder(2))(3)
```

Interactive Diagram
The Environment Diagram for Function Composition

```python
def square(x):
    return x * x

def make_adder(n):
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    def h(x):
        return f(g(x))
    return h

compose1(square, make_adder(2))(3)
```

Return value of make_adder is an argument to compose1
The Environment Diagram for Function Composition

```python
1 def square(x):
   2     return x * x

4 def make_adder(n):
   5     def adder(k):
   6         return k + n
   7     return adder

9 def compose1(f, g):
10    def h(x):
11         return f(g(x))
12     return h

14 compose1(square, make_adder(2))(3)
```

Return value of make_adder is an argument to compose1
The Environment Diagram for Function Composition

```
1 def square(x):
2     return x * x
3
4 def make_adder(n):
5     def adder(k):
6         return k + n
7     return adder
8
9 def compose1(f, g):
10    def h(x):
11        return f(g(x))
12    return h
13
14 compose1(square, make_adder(2))(3)
```

Interactive Diagram

Return value of make_adder is an argument to compose1
The Environment Diagram for Function Composition

```
1  def square(x):
2      return x * x
3
4  def make_adder(n):
5      def adder(k):
6          return k + n
7      return adder
8
9  def compose1(f, g):
10     def h(x):
11        return f(g(x))
12     return h
13
14  compose1(square, make_adder(2))(3)
```

Return value of make_adder is an argument to compose1

Interactive Diagram
Return value of make_adder is an argument to compose1

```
def square(x):
    return x * x

def make_adder(n):
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    def h(x):
        return f(g(x))
    return h

compose1(square, {make_adder(2)})(3)
```
def square(x):
 return x * x

def make_adder(n):
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 def h(x):
 return f(g(x))
 return h

compose1(square, make_adder(2))(3)

Return value of make_adder is an argument to compose1
```python
def square(x):
    return x * x

def make_adder(n):
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    def h(x):
        return f(g(x))
    return h

compose1(square, make_adder(2))(3)
```

Return value of make_adder is an argument to compose1
Lambda Expressions

(Demo)
Lambda Expressions
Lambda Expressions

```python
>>> x = 10
```
Lambda Expressions

```python
>>> x = 10

>>> square = x * x
```

14
Lambda Expressions

>>> x = 10

An expression: this one evaluates to a number

>>> square = \[x * x\]
Lambda Expressions

```python
>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x
```

An expression: this one evaluates to a number

```python
>>> square = lambda x: x * x
```
Lambda Expressions

```python
>>> x = 10

An expression: this one evaluates to a number

>>> square = x * x

Also an expression: evaluates to a function

>>> square = lambda x: x * x
```
Lambda Expressions

```python
>>> x = 10

An expression: this one evaluates to a number

>>> square = x * x

Also an expression: evaluates to a function

>>> square = lambda x: x * x

A function
```
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function
    with formal parameter x
```
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function
  with formal parameter x
  that returns the value of "x * x"
```
Lambda Expressions

```python
>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x
```

An expression: this one evaluates to a number

Also an expression: evaluates to a function

A function with formal parameter `x` that returns the value of "x * x"

Important: No "return" keyword!
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = \(x \cdot x\)
Also an expression: evaluates to a function

>>> square = \(\text{lambda } x: x \cdot x\)
Important: No "return" keyword!
A function with formal parameter \(x\)
that returns the value of \(x \cdot x\)

Must be a single expression
```
Lambda Expressions

>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
A function
with formal parameter x
that returns the value of "x * x"

>>> square(4)
16
Must be a single expression
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
Important: No "return" keyword!

A function
with formal parameter x
that returns the value of "x * x"

>>> square(4)
16
Must be a single expression
```

Lambda expressions are not common in Python, but important in general.
Lambda Expressions

```python
>>> x = 10
An expression: this one evaluates to a number

>>> square = x * x
Also an expression: evaluates to a function

>>> square = lambda x: x * x
Important: No "return" keyword!
A function
  with formal parameter x
  that returns the value of "x * x"

>>> square(4)
16
Must be a single expression
```

Lambda expressions are not common in Python, but important in general

Lambda expressions in Python cannot contain statements at all!
Lambda Expressions Versus Def Statements
Lambda Expressions Versus Def Statements

VS
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x
\]
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x):
\text{ return } x \times x
\]
Lambda Expressions Versus Def Statements

\[
square = \lambda x: x \times x
\]

\[
def square(x):
 return x \times x
\]

- Both create a function with the same domain, range, and behavior.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x): \text{return } x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
Lambda Expressions Versus Def Statements

| square = lambda x: x * x | VS | def square(x): return x * x |

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x \quad \text{ VS } \quad \text{def} \ \text{square}(x): \quad \text{return} \ x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[
square = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x): \quad \text{return } x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name \textit{square}.
- Only the \texttt{def} statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x): \quad \text{return } x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name `square`.
- Only the `def` statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[
square = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x):
\]
\[
\hspace{1cm} \text{return } x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[
\text{square} = \lambda x: x \times x
\]

\[
\text{def square}(x):
\text{\hspace{1em}} \text{return } x \times x
\]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.
Lambda Expressions Versus Def Statements

\[\text{square} = \lambda x: x \times x \quad \text{VS} \quad \text{def square}(x): \]
\[\quad \text{return } x \times x \]

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the frame in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.
Currying
Function Currying
Function Currying

def make_adder(n):
 return lambda k: n + k
Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5
Function Currying

```python
def make_adder(n):
    return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions.
Function Currying

```python
def make_adder(n):
    return lambda k: n + k
```

```python
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions.
Function Currying

```python
def make_adder(n):
    return lambda k: n + k
```

```text
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function