Monday, February 2
Announcements
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm

• Project 1 due Thursday 2/5 @ 11:59pm
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm
• Project 1 due Thursday 2/5 @ 11:59pm
 • Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
Announcements

- Homework 2 due Monday 2/2 @ 11:59pm
- Project 1 due Thursday 2/5 @ 11:59pm
 - Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
 - Partner party on Wednesday 2/4 3pm–4pm in Wozniak Lounge, Soda Hall
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm

• Project 1 due Thursday 2/5 @ 11:59pm
 ▪ Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
 ▪ Partner party on Wednesday 2/4 3pm–4pm in Wozniak Lounge, Soda Hall
 ▪ Earn 1 bonus point if you finish by Wednesday 2/4 @ 11:59pm
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm

• Project 1 due Thursday 2/5 @ 11:59pm
 ▪ Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
 ▪ Partner party on Wednesday 2/4 3pm–4pm in Wozniak Lounge, Soda Hall
 ▪ Earn 1 bonus point if you finish by Wednesday 2/4 @ 11:59pm
 ▪ Composition: Programs should be concise, well-named, understandable, and easy to follow
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm

• Project 1 due Thursday 2/5 @ 11:59pm
 ▪ Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
 ▪ Partner party on Wednesday 2/4 3pm–4pm in Wozniak Lounge, Soda Hall
 ▪ Earn 1 bonus point if you finish by Wednesday 2/4 @ 11:59pm
 ▪ Composition: Programs should be concise, well-named, understandable, and easy to follow

• Extra lecture 2 on Thursday 2/5 5pm–6:30pm in 2050 VLSB
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm

• Project 1 due Thursday 2/5 @ 11:59pm
 ▪ Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
 ▪ Partner party on Wednesday 2/4 3pm–4pm in Wozniak Lounge, Soda Hall
 ▪ Earn 1 bonus point if you finish by Wednesday 2/4 @ 11:59pm
 ▪ Composition: Programs should be concise, well-named, understandable, and easy to follow

• Extra lecture 2 on Thursday 2/5 5pm–6:30pm in 2050 VLSB
 ▪ Hog strategies & church numerals
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm
• Project 1 due Thursday 2/5 @ 11:59pm
 ▪ Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
 ▪ Partner party on Wednesday 2/4 3pm–4pm in Wozniak Lounge, Soda Hall
 ▪ Earn 1 bonus point if you finish by Wednesday 2/4 @ 11:59pm
 ▪ Composition: Programs should be concise, well-named, understandable, and easy to follow
• Extra lecture 2 on Thursday 2/5 5pm–6:30pm in 2050 VLSB
 ▪ Hog strategies & church numerals
• Midterm 1 on Monday 2/9 7pm–9pm
Announcements

• Homework 2 due Monday 2/2 @ 11:59pm

• Project 1 due Thursday 2/5 @ 11:59pm
 ▪ Project party on Tuesday 2/3 5pm–6:30pm in 2050 VLSB
 ▪ Partner party on Wednesday 2/4 3pm–4pm in Wozniak Lounge, Soda Hall
 ▪ Earn 1 bonus point if you finish by Wednesday 2/4 @ 11:59pm
 ▪ Composition: Programs should be concise, well-named, understandable, and easy to follow

• Extra lecture 2 on Thursday 2/5 5pm–6:30pm in 2050 VLSB
 ▪ Hog strategies & church numerals

• Midterm 1 on Monday 2/9 7pm–9pm
 ▪ Conflict? Fill out the conflict form today! http://goo.gl/2P5fKq
Recursive Functions
Recursive Functions
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.
Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function.
Digit Sums

\[2+0+1+5 = 8\]
Digit Sums

2+0+1+5 = 8

• If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9.
Digit Sums

2 + 0 + 1 + 5 = 8

• If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9.
• Useful for typo detection!
Digit Sums

If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9.

Useful for typo detection!

$2+0+1+5 = 8$

The Bank of 61A

1234 5678 9098 7658

OSKI THE BEAR
Digit Sums

2+0+1+5 = 8

- If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9.
- Useful for typo detection!
Digit Sums

2+0+1+5 = 8

- If a number a is divisible by 9, then $\text{sum_digits}(a)$ is also divisible by 9.
- Useful for typo detection!

A checksum digit is a function of all the other digits; it can be computed to detect typos.

- Credit cards actually use the Luhn algorithm, which we'll implement after digit_sum.
Sum Digits Without a While Statement
def split(n):
 '''Split positive n into all but its last digit and its last digit.'''
 return n // 10, n % 10
def split(n):
 """Split positive n into all but its last digit and its last digit."""
 return n // 10, n % 10

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
Sum Digits Without a While Statement

def split(n):
 """Split positive n into all but its last digit and its last digit."""
 return n // 10, n % 10

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
def split(n):
 """Split positive n into all but its last digit and its last digit."""
 return n // 10, n % 10

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
def split(n):
 """Split positive n into all but its last digit and its last digit."""
 return n // 10, n % 10

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
The Anatomy of a Recursive Function

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
The Anatomy of a Recursive Function

• The def statement header is similar to other functions

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The `def` statement header is similar to other functions

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The **def statement header** is similar to other functions
- Conditional statements check for base cases

```python
def sum_digits(n):
    '''Return the sum of the digits of positive integer n.'''
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

• The **def statement header** is similar to other functions
• Conditional statements check for **base cases**

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""

    if n < 10:
        return n

    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The **def statement header** is similar to other functions
- Conditional statements check for **base cases**
- Base cases are evaluated without recursive calls

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The `def` statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls

```python
def sum_digits(n):
    
    """Return the sum of the digits of positive integer n.""
    
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

• The \texttt{def} statement header is similar to other functions
• Conditional statements check for \textbf{base cases}
• Base cases are evaluated \textbf{without recursive calls}
• Recursive cases are evaluated with recursive calls

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

• The `def` statement header is similar to other functions
• Conditional statements check for `base cases`
• Base cases are evaluated `without recursive calls`
• Recursive cases are evaluated `with recursive calls`

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The Anatomy of a Recursive Function

- The **def statement header** is similar to other functions
- Conditional statements check for **base cases**
- Base cases are evaluated **without recursive calls**
- Recursive cases are evaluated **with recursive calls**

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n.""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

(Demo)
Recursion in Environment Diagrams
Recursion in Environment Diagrams

```python
1 def fact(n):
   2     if n == 0:
   3         return 1
   4     else:
   5         return n * fact(n-1)
   6
   7 fact(3)
```

Interactive Diagram
Recursion in Environment Diagrams

```python
1  def fact(n):
2      if n == 0:
3          return 1
4      else:
5          return n * fact(n-1)
6
7  fact(3)
```
Recursion in Environment Diagrams

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

fact(3)
```

(Demo)

Global frame

```
fact

f1: fact [parent=Global]
    n 3

f2: fact [parent=Global]
    n 2

f3: fact [parent=Global]
    n 1

f4: fact [parent=Global]
    n 0
    Return value 1
```
Recursion in Environment Diagrams

```python
1  def fact(n):
    2    if n == 0:
    3        return 1
    4    else:
    5        return n * fact(n-1)
    6
    7  fact(3)
```

- The same function `fact` is called multiple times.

(Demo)

Global frame

```
fact
```

```
f1: fact [parent=Global]
    n  3
```

```
f2: fact [parent=Global]
    n  2
```

```
f3: fact [parent=Global]
    n  1
```

```
f4: fact [parent=Global]
    n  0
  Return value
    1
```
Recursion in Environment Diagrams

The same function fact is called multiple times.

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

(Demo)

Global frame

```
func fact(n) [parent=Global]
  fact
```

```
f1: fact [parent=Global]
  n 3
```

```
f2: fact [parent=Global]
  n 2
```

```
f3: fact [parent=Global]
  n 1
```

```
f4: fact [parent=Global]
  n 0
  Return value 1
```

Interactive Diagram
Recursion in Environment Diagrams

1. The same function fact is called multiple times.
2. Different frames keep track of the different arguments in each call.

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

fact(3)
```

(Demo)

```
Global frame

func fact(n) [parent=Global]

f1: fact [parent=Global]
    n 3

f2: fact [parent=Global]
    n 2

f3: fact [parent=Global]
    n 1

f4: fact [parent=Global]
    n 0
    Return value 1
```
Recursion in Environment Diagrams

- The same function `fact` is called multiple times.
- Different frames keep track of the different arguments in each call.
- What \(n \) evaluates to depends upon which is the current environment.

```
1  def fact(n):
2       if n == 0:
3           return 1
4       else:
5           return n * fact(n-1)
6
7  fact(3)
```

(Demo)

Global frame

```
  | func fact(n) [parent=Global]
  |     fact
```

f1: fact [parent=Global]

```
  | n 3
```

f2: fact [parent=Global]

```
  | n 2
```

f3: fact [parent=Global]

```
  | n 1
```

f4: fact [parent=Global]

```
  | n 0
  | Return value 1
```
Recursion in Environment Diagrams

1. The same function `fact(n)` is called multiple times.
2. Different frames keep track of the different arguments in each call.
3. What `n` evaluates to depends upon which is the current environment.

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)

fact(3)
```

(Demo)

- Global frame
- `fact` frame
- `f1` frame
- `f2` frame
- `f3` frame
- `f4` frame

Interactive Diagram
Recursion in Environment Diagrams

The same function `fact` is called multiple times.

Different frames keep track of the different arguments in each call.

What `n` evaluates to depends upon which is the current environment.

Each call to `fact` solves a simpler problem than the last: smaller `n`.

```python
    def fact(n):
        if n == 0:
            return 1
        else:
            return n * fact(n-1)

    fact(3)
```

(Demo)

```
Global frame

func fact(n) [parent=Global]

fact

f1: fact [parent=Global]

f2: fact [parent=Global]

f3: fact [parent=Global]

f4: fact [parent=Global]

n = 3
n = 2
n = 1
n = 0

Return value
```

Interactive Diagram
Iteration vs Recursion
Iteration vs Recursion

Iteration is a special case of recursion
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]

\[n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Names:

\[n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]
Iteration vs Recursion

Iteration is a special case of recursion

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Math:

$$n! = \prod_{k=1}^{n} k$$

Names: n, total, k, fact_iter

$$n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n-1)! & \text{otherwise}
\end{cases}$$
Iteration vs Recursion

Iteration is a special case of recursion

\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 \]

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Names:

n, total, k, fact_iter

\[n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{otherwise}
\end{cases} \]

Names:

n, fact

Math:

\[n! = \prod_{k=1}^{n} k \]
Verifying Recursive Functions
The Recursive Leap of Faith
The Recursive Leap of Faith

Photo by Kevin Lee, Preikestolen, Norway
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case.
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case.

2. Treat `fact` as a functional abstraction!
The Recursive Leap of Faith

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case.

2. Treat fact as a functional abstraction!

3. Assume that fact(n-1) is correct.
The Recursive Leap of Faith

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case.

2. Treat `fact` as a functional abstraction!

3. Assume that `fact(n-1)` is correct.

4. Verify that `fact(n)` is correct, assuming that `fact(n-1)` correct.
def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
Verifying Digit Sum

The `sum_digits` function computes the sum of positive `n` correctly because:

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
Verifying Digit Sum

The sum_digits function computes the sum of positive n correctly because:

The sum of the digits of any n < 10 is n. \(\text{(base case)} \)

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
The sum_digits function computes the sum of positive \(n \) correctly because:

The sum of the digits of \(n < 10 \) is \(n \). \(\text{(base case)} \)

Assuming \(\text{sum_digits}(k) \) correctly sums the digits of \(k \). \(\text{(abstraction)} \)

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
Verifying Digit Sum

The sum_digits function computes the sum of positive n correctly because:

The sum of the digits of \(n < 10 \) is \(n \).

Assuming \(\text{sum_digits}(k) \) correctly sums the digits of \(k \) for all \(k \) with fewer digits than \(n \),

Verifying Digit Sum

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

Verifying Digit Sum

The sum_digits function computes the sum of positive \(n \) correctly because:

The sum of the digits of \(\boxed{\text{any } n < 10} \). (\textit{base case})

Assuming \(\boxed{\text{sum_digits}(k) \text{ correctly sums the digits of } k} \) for all \(\boxed{\text{for all } k \text{ with fewer digits than } n} \), \(\text{(abstraction)} \)

\(\text{sum_digits}(n) \) will be \(\boxed{\text{sum_digits}(n//10) \text{ plus the last digit of } n} \). \(\text{(simpler case)} \)

\(\text{sum_digits}(n) \text{ will be} \boxed{\text{sum_digits}(n//10) \text{ plus the last digit of } n} \). \(\text{(conclusion)} \)

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n.""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

Verifying Digit Sum

The sum_digits function computes the sum of positive n correctly because:

The sum of the digits of any \(n < 10 \) is \(n \). \hspace{1cm} \text{(base case)}

Assuming \(\text{sum_digits}(k) \) correctly sums the digits of \(k \) for all \(k \) with fewer digits than \(n \), \hspace{1cm} \text{(abstraction)}

for all \(n \), \hspace{1cm} \text{(simpler case)}

\(\text{sum_digits}(n) \) will be \(\text{sum_digits}(n//10) + \text{last} \). \hspace{1cm} \text{(conclusion)}

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n.""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```
Verifying Digit Sum

The sum_digits function computes the sum of positive n correctly because:

The sum of the digits of any n < 10 is n. \hspace{2cm} \text{(base case)}

Assuming \text{sum_digits}(k) correctly sums the digits of k \hspace{2cm} \text{(abstraction)}

for all \hspace{2cm} \text{(simpler case)}

\text{sum_digits}(n) will be \hspace{2cm} \text{(conclusion)}

def sum_digits(n):
 """Return the sum of the digits of positive integer n.""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
Verifying Digit Sum

The sum_digits function computes the sum of positive n correctly because:

The sum of the digits of any n < 10 is n. \hspace{1cm} (base case)

Assuming \texttt{sum_digits(k)} correctly sums the digits of k \hspace{1cm} (abstraction)

for all k with fewer digits than n, \hspace{1cm} (simpler case)

\texttt{sum_digits(n)} will be \hspace{1cm} (conclusion)

\begin{verbatim}
def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
\end{verbatim}
The sum_digits function computes the sum of positive n correctly because:

The sum of the digits of any $n < 10$ is n. \hspace{1cm} \text{(base case)}

Assuming sum_digits(k) correctly sums the digits of k \hspace{1cm} \text{(abstraction)}

for all k with fewer digits than n, \hspace{1cm} \text{(simpler case)}

sum_digits(n) will be sum_digits(n//10) plus the last digit of n. \hspace{1cm} \text{(conclusion)}

def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
Mutual Recursion
The Luhn Algorithm
The Luhn Algorithm

Used to verify credit card numbers
The Luhn Algorithm

Used to verify credit card numbers

The Luhn Algorithm

Used to verify credit card numbers

• From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).
The Luhn Algorithm

Used to verify credit card numbers

- From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

- Take the sum of all the digits.
The Luhn Algorithm

Used to verify credit card numbers

- From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., \(7 \times 2 = 14\)), then sum the digits of the products (e.g., \(10: 1 + 0 = 1\), \(14: 1 + 4 = 5\)).

- Take the sum of all the digits.

```
1  3  8  7  4  3
```
The Luhn Algorithm

Used to verify credit card numbers

- From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

- Take the sum of all the digits.

```
  1 | 3 | 8 | 7 | 4 | 3
  2 | 3 | 1+6=7 | 7 | 8 | 3
```
The Luhn Algorithm

Used to verify credit card numbers

• From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

• Take the sum of all the digits.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

= 30
The Luhn Algorithm

Used to verify credit card numbers

• From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

• Take the sum of all the digits.

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

= 30

The Luhn sum of a valid credit card number is a multiple of 10.
The Luhn Algorithm

Used to verify credit card numbers

• From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

• Take the sum of all the digits.

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1+6=7</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

The Luhn sum of a valid credit card number is a multiple of 10. (Demo)
Recursion and Iteration
Converting Recursion to Iteration
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.
def sum_digits(n):
 """Return the sum of the digits of positive integer n."""

 if n < 10:
 return n

 else:
 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.
def sum_digits(n):
 """Return the sum of the digits of positive integer n."""
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

A partial sum

What's left to sum
Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```python
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

A partial sum

What's left to sum

(Demo)
Converting Iteration to Recursion
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum
```
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum

def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum

def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```

Updates via assignment become...
Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```python
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum

def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```

Updates via assignment become...

...arguments to a recursive call